Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space researchers developing tool to help disoriented pilots

14.11.2008
Not knowing which way is up can have deadly consequences for pilots. This confusion of the senses, called spatial disorientation, is responsible for up to 10 percent of general aviation accidents in the United States, with 90 percent of these being fatal, according to the Federal Aviation Administration.

Although there have been no spatial disorientation accidents in space, it is a major concern for astronaut pilots. A National Space Biomedical Research Institute (NSBRI) study is tackling the issue by developing a tool that will assist pilots in real-time to overcome spatial disorientation.

Project leader Ron Small said the first step is to understand the factors leading to spatial disorientation, which tends to occur in poor visibility conditions. The root cause, though, is physiology.

“Humans are notoriously bad at figuring out their orientation when flying because we did not evolve in a flight environment, in contrast with birds,” said Small, a member of NSBRI’s Sensorimotor Adaptation Team. “It is worse in a spacecraft because the vehicle can move side to side, up and down, and rotate in all directions.”

The project involves specially designed software that monitors the flight of the vehicle – speed, heading, pitch and altitude – and the actions of the pilot. The system will use audio and visual cues to alert pilots of problems before things get out of hand. The group is also looking at the option of testing a vest with pager-like vibrators distributed throughout that vibrate in a sequence to alert the pilot when an orientation correction is needed.

“It is really important that the system alert pilots in real-time,” said Small, a principal system engineer at Alion Science and Technology Corp., in Boulder, Colo. “We’re not doing the pilot any good if we can only give advice after the fact.”

Small is working closely with co-investigator Dr. Charles Oman, who is NSBRI’s Sensorimotor Adaptation Team Leader and director of the Man Vehicle Laboratory at Massachusetts Institute of Technology. To better understand the problems facing astronauts, the group is building on information from Small’s previous studies of spatial disorientation for the U.S. military and analyzing data from aircraft accidents and space missions. The group has consulted with experts such as former astronaut Dr. Thomas Jones.

“As we go forward with deep space exploration and return to the moon, it’s important to provide the latest tools in the cockpit to help pilots from being misled by spatial disorientation,” said Jones, a former U.S. Air Force pilot and veteran of four space shuttle flights. “Spatial disorientation mistakes in space are very rare, but because of mission costs and the potential for loss of life, you want to do everything possible to preclude them.”

The group has tested the software’s ability to detect spatial disorientation incidents. They are now working to better understand the differences in craft movement in the atmosphere and in space and how the human inner ear functions in both environments. The inner ear helps control the sense of orientation.

The researchers are putting emphasis on lunar landings due to the challenges of reduced gravity and the unfamiliar, dusty terrain. Data collected from helicopters will play a large role in the research since the rotary-propelled aircrafts’ movements are most like a spacecraft touching down on the moon. Low-gravity flight experiments and lunar lander simulations are slated to begin next year.

The project team members believe the onboard aids developed for spaceflight will be an essential tool for pilots of medical emergency helicopters, who often respond to auto accidents on dark, rainy nights when it is easy to become disoriented. Military and civilian pilots are also likely to benefit from the research.

“Pilots of small planes often have less training in spatial disorientation and how to respond to an incident,” Jones said. “Their lives can be saved by having this extra help in the cockpit.”

The NSBRI Sensorimotor Adaptation Team is developing pre-flight and in-flight training countermeasures so that astronauts can adjust more rapidly to weightlessness, to other gravitational environments, and upon return to Earth’s gravity. The team is also developing training tools for telerobotic arm operation.

NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute’s science, technology and education projects take place at more than 60 institutions across the United States.

Brad Thomas | NSBRI
Further information:
http://www.nsbri.org
http://www.nsbri.org/NewsPublicOut/Release.epl?r=114

More articles from Information Technology:

nachricht New technology enables 5-D imaging in live animals, humans
16.01.2017 | University of Southern California

nachricht Fraunhofer FIT announces CloudTeams collaborative software development platform – join it for free
10.01.2017 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>