Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New smartphone app automatically tags photos

30.06.2011
So much for tagging photographs with names, locations and activities yourself – a new cell phone application can take care of that for you.

The system works by taking advantage of the multiple sensors on a mobile phone, as well as those of other mobile phones in the vicinity.

Dubbed TagSense, the new app was developed by students from Duke University and the University of South Carolina (USC) and unveiled at the ninth Association for Computing Machinery's International Conference on Mobile Systems, Applications and Services (MobiSys), being held in Washington, D.C.

"In our system, when you take a picture with a phone, at the same time it senses the people and the context by gathering information from all the other phones in the area," said Xuan Bao, a Ph.D. student in computer science at Duke who received his master's degree at Duke in electrical and computer engineering.

Bao and Chuan Qin, a visiting graduate student from USC, developed the app working with Romit Roy Choudhury, assistant professor of electrical and computer engineering at Duke's Pratt School of Engineering. Qin and Bao are currently involved in summer internships at Microsoft Research.

"Phones have many different kinds of sensors that you can take advantage of," Qin said. "They collect diverse information like sound, movement, location and light. By putting all that information together, you can sense the setting of a photograph and describe its attributes."

By using information about the environment of a photograph, the students believe they can achieve a more accurate tagging of a particular photograph than could be achieved by facial recognition alone. Such information about a photograph's entirety provides additional details that can then be searched at a later time.

For example, the phone's built-in accelerometer can tell if a person is standing still for a posed photograph, bowling or even dancing. Light sensors in the phone's camera can tell if the shot is being taken indoors or outdoors on a sunny or cloudy day. The sensors can also approximate environmental conditions – such as snow or rain -- by looking up the weather conditions at that time and location. The microphone can detect whether or not a person in the photograph is laughing, or quiet. All of these attributes are then assigned to each photograph, the students said.

Bao pointed out that with multiple tags describing more than just a particular person's name, it would be easier to not only organize an album of photographs for future reference, but find particular photographs years later. With the exploding number of digital pictures in the cloud and in our personal computers, the ability to easily search and retrieve desired pictures will be valuable in the future, he said.

"So, for example, if you've taken a bunch of photographs at a party, it would be easy at a later date to search for just photographs of happy people dancing," Qin said. "Or more specifically, what if you just wanted to find photographs only of Mary dancing at the party and didn't want to look through all the photographs of Mary?"

These added details of automatic tagging could help complement existing tagging applications, according to senior researcher Roy Choudhury.

"While facial recognition programs continue to improve, we believe that the ability to identify photographs based on the setting of the photograph can lead to a richer, more detailed way to tag photographs," Roy Choudhury said. "TagSense was compared to Apple's iPhoto and Google's Picasa, and showed that it can provide greater sophistication in tagging photographs."

The students envision that TagSense would most likely be adopted by groups of people, such as friends, who would "opt in," allowing their mobile phone capabilities to be harnessed when members of the group were together. Importantly, Roy Choudhury added, TagSense would not request sensed data from nearby phones that do not belong to this group, thereby protecting users' privacy.

The experiments were conducted using eight Google Nexus One mobile phones on more than 200 photos taken at various locations across the Duke campus, including classroom buildings, gyms and the art museum.

The current application is a prototype, and the researchers believe that a commercial product could be available in a few years.

Srihari Nelakuditi, associate professor of computer science and engineering at USC, was also a member of the research team. The research is supported by the National Science Foundation. Roy Choudhury's Systems Networking Research Group is also supported by Microsoft, Nokia, Verizon, and Cisco.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: TagSense computer engineering computer science mobile phones

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>