Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New smartphone app automatically tags photos

30.06.2011
So much for tagging photographs with names, locations and activities yourself – a new cell phone application can take care of that for you.

The system works by taking advantage of the multiple sensors on a mobile phone, as well as those of other mobile phones in the vicinity.

Dubbed TagSense, the new app was developed by students from Duke University and the University of South Carolina (USC) and unveiled at the ninth Association for Computing Machinery's International Conference on Mobile Systems, Applications and Services (MobiSys), being held in Washington, D.C.

"In our system, when you take a picture with a phone, at the same time it senses the people and the context by gathering information from all the other phones in the area," said Xuan Bao, a Ph.D. student in computer science at Duke who received his master's degree at Duke in electrical and computer engineering.

Bao and Chuan Qin, a visiting graduate student from USC, developed the app working with Romit Roy Choudhury, assistant professor of electrical and computer engineering at Duke's Pratt School of Engineering. Qin and Bao are currently involved in summer internships at Microsoft Research.

"Phones have many different kinds of sensors that you can take advantage of," Qin said. "They collect diverse information like sound, movement, location and light. By putting all that information together, you can sense the setting of a photograph and describe its attributes."

By using information about the environment of a photograph, the students believe they can achieve a more accurate tagging of a particular photograph than could be achieved by facial recognition alone. Such information about a photograph's entirety provides additional details that can then be searched at a later time.

For example, the phone's built-in accelerometer can tell if a person is standing still for a posed photograph, bowling or even dancing. Light sensors in the phone's camera can tell if the shot is being taken indoors or outdoors on a sunny or cloudy day. The sensors can also approximate environmental conditions – such as snow or rain -- by looking up the weather conditions at that time and location. The microphone can detect whether or not a person in the photograph is laughing, or quiet. All of these attributes are then assigned to each photograph, the students said.

Bao pointed out that with multiple tags describing more than just a particular person's name, it would be easier to not only organize an album of photographs for future reference, but find particular photographs years later. With the exploding number of digital pictures in the cloud and in our personal computers, the ability to easily search and retrieve desired pictures will be valuable in the future, he said.

"So, for example, if you've taken a bunch of photographs at a party, it would be easy at a later date to search for just photographs of happy people dancing," Qin said. "Or more specifically, what if you just wanted to find photographs only of Mary dancing at the party and didn't want to look through all the photographs of Mary?"

These added details of automatic tagging could help complement existing tagging applications, according to senior researcher Roy Choudhury.

"While facial recognition programs continue to improve, we believe that the ability to identify photographs based on the setting of the photograph can lead to a richer, more detailed way to tag photographs," Roy Choudhury said. "TagSense was compared to Apple's iPhoto and Google's Picasa, and showed that it can provide greater sophistication in tagging photographs."

The students envision that TagSense would most likely be adopted by groups of people, such as friends, who would "opt in," allowing their mobile phone capabilities to be harnessed when members of the group were together. Importantly, Roy Choudhury added, TagSense would not request sensed data from nearby phones that do not belong to this group, thereby protecting users' privacy.

The experiments were conducted using eight Google Nexus One mobile phones on more than 200 photos taken at various locations across the Duke campus, including classroom buildings, gyms and the art museum.

The current application is a prototype, and the researchers believe that a commercial product could be available in a few years.

Srihari Nelakuditi, associate professor of computer science and engineering at USC, was also a member of the research team. The research is supported by the National Science Foundation. Roy Choudhury's Systems Networking Research Group is also supported by Microsoft, Nokia, Verizon, and Cisco.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

Further reports about: TagSense computer engineering computer science mobile phones

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

Quantum optical sensor for the first time tested in space – with a laser system from Berlin

23.01.2017 | Physics and Astronomy

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>