Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Data Solution Optimizes Medical Workflows

24.09.2015

Siemens has developed "teamplay", a software program that makes it possible to systematically utilize data from diagnostic imaging procedures. The solution collects the metadata stored with every scan, including the time, type, and duration of an examination, as well as the radiation dose in the case of X-rays.

Based on this data, large hospitals, hospital networks, and diagnostic centers can get an overview of how many devices are being used. They can then deploy them more efficiently and develop their own goals, for example with regard to capacity utilization or radiation dose. The data is stored in a secure cloud, allowing for comparisons across multiple institutions and even third-party equipment suppliers.


Helping connect healthcare experts and increasing the usability of the wealth of medical imaging data – that's the goal of "teamplay," the new solution from Siemens Healthcare.

CT scanners, MRI scanners, X-ray machines, and ultrasound devices generate huge quantities of data. Roughly one million examinations are conducted every day just with Siemens devices. The majority of data collected in this way remains unused because it is stored in different formats and in widely dispersed locations. Experts estimate that the efficient use of this data could save hundreds of billions of dollars in the U.S. healthcare system alone.1

Intelligent comparison of huge quantities of data is making it possible to use imaging devices such as CT scanners more efficiently.

Faster Exams and Better Equipment Utilization Rates

The teamplay program combines all this data and makes it accessible for analysis. Because it is based on the DICOM standard for storing and exchanging data from medical image files, it is compatible with devices from different manufacturers.

One function of teamplay is to analyze the radiation dose used in X-ray procedures. Currently, radiation dose for certain kinds of examinations is determined on the basis of legal limits or specifically collected monitoring data. Comparing the examination data of different devices generates additional information about attainable standards. This helps operators set their own goals or optimally use their devices for each kind of examination.

Information about the type, time, and duration of examinations can be used to optimize the capacity utilization of medical imaging devices. Hospital networks can determine whether the equipment in place at a given location is being used efficiently and for the right examinations. This information can also be used to improve operating procedures. For example, the body coils of MRI scanners must be reconfigured for different kinds of examinations; knowing exactly how much time that takes can help to optimize the order of patient examinations for optimal efficiency.

Secure Cloud

While it is already very useful for an institution to analyze the usage of its own infrastructure, teamplay goes a step further. Participants can compare anonymized data with that of similar organizations in order to arrive at realistic benchmarks for their own goals. For this, Siemens Healthcare utilizes a secure and certified Microsoft Azure cloud solution in which anonymized data is stored in a way that meets international data privacy standards and the legal requirements applicable to the protection of medical data.

In the next few years, teamplay will be gradually expanded to offer further possibilities for making data transparent and data networking more efficient. Among other things, a feature is planned that allows attending physicians to securely exchange examination images. In short, teamplay is a smart data solution that allows for the systematic, worldwide aggregation of participants’ device-specific medical data. This in turn opens the door to conducting analyses that either cannot be performed today, or are performed only with great difficulty.

1IBM, McKinsey Global Institute, http://bit.ly/1qaeJ9t

Disclaimer:

Please note that teamplay and future teamplay functions may differ from the statements in this text; furthermore, teamplay may not be available in all countries.

Norbert Aschenbrenner


Contact

Mr. Dr. Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
http://www.siemens.com

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>