Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Smart Data Solution Optimizes Medical Workflows


Siemens has developed "teamplay", a software program that makes it possible to systematically utilize data from diagnostic imaging procedures. The solution collects the metadata stored with every scan, including the time, type, and duration of an examination, as well as the radiation dose in the case of X-rays.

Based on this data, large hospitals, hospital networks, and diagnostic centers can get an overview of how many devices are being used. They can then deploy them more efficiently and develop their own goals, for example with regard to capacity utilization or radiation dose. The data is stored in a secure cloud, allowing for comparisons across multiple institutions and even third-party equipment suppliers.

Helping connect healthcare experts and increasing the usability of the wealth of medical imaging data – that's the goal of "teamplay," the new solution from Siemens Healthcare.

CT scanners, MRI scanners, X-ray machines, and ultrasound devices generate huge quantities of data. Roughly one million examinations are conducted every day just with Siemens devices. The majority of data collected in this way remains unused because it is stored in different formats and in widely dispersed locations. Experts estimate that the efficient use of this data could save hundreds of billions of dollars in the U.S. healthcare system alone.1

Intelligent comparison of huge quantities of data is making it possible to use imaging devices such as CT scanners more efficiently.

Faster Exams and Better Equipment Utilization Rates

The teamplay program combines all this data and makes it accessible for analysis. Because it is based on the DICOM standard for storing and exchanging data from medical image files, it is compatible with devices from different manufacturers.

One function of teamplay is to analyze the radiation dose used in X-ray procedures. Currently, radiation dose for certain kinds of examinations is determined on the basis of legal limits or specifically collected monitoring data. Comparing the examination data of different devices generates additional information about attainable standards. This helps operators set their own goals or optimally use their devices for each kind of examination.

Information about the type, time, and duration of examinations can be used to optimize the capacity utilization of medical imaging devices. Hospital networks can determine whether the equipment in place at a given location is being used efficiently and for the right examinations. This information can also be used to improve operating procedures. For example, the body coils of MRI scanners must be reconfigured for different kinds of examinations; knowing exactly how much time that takes can help to optimize the order of patient examinations for optimal efficiency.

Secure Cloud

While it is already very useful for an institution to analyze the usage of its own infrastructure, teamplay goes a step further. Participants can compare anonymized data with that of similar organizations in order to arrive at realistic benchmarks for their own goals. For this, Siemens Healthcare utilizes a secure and certified Microsoft Azure cloud solution in which anonymized data is stored in a way that meets international data privacy standards and the legal requirements applicable to the protection of medical data.

In the next few years, teamplay will be gradually expanded to offer further possibilities for making data transparent and data networking more efficient. Among other things, a feature is planned that allows attending physicians to securely exchange examination images. In short, teamplay is a smart data solution that allows for the systematic, worldwide aggregation of participants’ device-specific medical data. This in turn opens the door to conducting analyses that either cannot be performed today, or are performed only with great difficulty.

1IBM, McKinsey Global Institute,


Please note that teamplay and future teamplay functions may differ from the statements in this text; furthermore, teamplay may not be available in all countries.

Norbert Aschenbrenner


Mr. Dr. Norbert Aschenbrenner

Editorial Office

Siemens AG

Mr. Florian Martini

Press contact

Siemens AG

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>