Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart Data Solution Optimizes Medical Workflows

24.09.2015

Siemens has developed "teamplay", a software program that makes it possible to systematically utilize data from diagnostic imaging procedures. The solution collects the metadata stored with every scan, including the time, type, and duration of an examination, as well as the radiation dose in the case of X-rays.

Based on this data, large hospitals, hospital networks, and diagnostic centers can get an overview of how many devices are being used. They can then deploy them more efficiently and develop their own goals, for example with regard to capacity utilization or radiation dose. The data is stored in a secure cloud, allowing for comparisons across multiple institutions and even third-party equipment suppliers.


Helping connect healthcare experts and increasing the usability of the wealth of medical imaging data – that's the goal of "teamplay," the new solution from Siemens Healthcare.

CT scanners, MRI scanners, X-ray machines, and ultrasound devices generate huge quantities of data. Roughly one million examinations are conducted every day just with Siemens devices. The majority of data collected in this way remains unused because it is stored in different formats and in widely dispersed locations. Experts estimate that the efficient use of this data could save hundreds of billions of dollars in the U.S. healthcare system alone.1

Intelligent comparison of huge quantities of data is making it possible to use imaging devices such as CT scanners more efficiently.

Faster Exams and Better Equipment Utilization Rates

The teamplay program combines all this data and makes it accessible for analysis. Because it is based on the DICOM standard for storing and exchanging data from medical image files, it is compatible with devices from different manufacturers.

One function of teamplay is to analyze the radiation dose used in X-ray procedures. Currently, radiation dose for certain kinds of examinations is determined on the basis of legal limits or specifically collected monitoring data. Comparing the examination data of different devices generates additional information about attainable standards. This helps operators set their own goals or optimally use their devices for each kind of examination.

Information about the type, time, and duration of examinations can be used to optimize the capacity utilization of medical imaging devices. Hospital networks can determine whether the equipment in place at a given location is being used efficiently and for the right examinations. This information can also be used to improve operating procedures. For example, the body coils of MRI scanners must be reconfigured for different kinds of examinations; knowing exactly how much time that takes can help to optimize the order of patient examinations for optimal efficiency.

Secure Cloud

While it is already very useful for an institution to analyze the usage of its own infrastructure, teamplay goes a step further. Participants can compare anonymized data with that of similar organizations in order to arrive at realistic benchmarks for their own goals. For this, Siemens Healthcare utilizes a secure and certified Microsoft Azure cloud solution in which anonymized data is stored in a way that meets international data privacy standards and the legal requirements applicable to the protection of medical data.

In the next few years, teamplay will be gradually expanded to offer further possibilities for making data transparent and data networking more efficient. Among other things, a feature is planned that allows attending physicians to securely exchange examination images. In short, teamplay is a smart data solution that allows for the systematic, worldwide aggregation of participants’ device-specific medical data. This in turn opens the door to conducting analyses that either cannot be performed today, or are performed only with great difficulty.

1IBM, McKinsey Global Institute, http://bit.ly/1qaeJ9t

Disclaimer:

Please note that teamplay and future teamplay functions may differ from the statements in this text; furthermore, teamplay may not be available in all countries.

Norbert Aschenbrenner


Contact

Mr. Dr. Norbert Aschenbrenner

Editorial Office

Siemens AG
norbert.aschenbrenner@siemens.com


Mr. Florian Martini

Press contact

Siemens AG
florian.martini@siemens.com

Dr. Norbert Aschenbrenner | Siemens Pictures of the Future
Further information:
http://www.siemens.com

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>