Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The single photon switch

12.01.2009
Computing based on photons rather than electrons, on the other hand, promises significantly faster computation and information processing. An international team of researchers has now developed a theoretical system that would allow single photons to be controlled reliably.

Little more than a system of two energy levels could be used to control a single particle of light

Modern electronics is built upon the control of electric charges through an electric field. Computing based on photons rather than electrons, on the other hand, promises significantly faster computation and information processing. An international team of researchers has now developed a theoretical system that would allow single photons to be controlled reliably. “The system we propose can be used as a quantum switch to control the transport of single photons,” says team member Franco Nori from the Advanced Science Institute, Wako, and The University of Michigan, USA.

In contrast to electrons, exercising control over photons is rather difficult to achieve, because light travels at high speeds and hardly interacts with matter. This has hampered the realization of schemes such as all-optical computing. The use of resonators, however, offers a solution to better control the way light propagates. Resonators are small cavities, bound by mirrors at both ends that bounce light back and only occasionally let light out.

As reported in the journal Physical Review Letters (1), the researchers studied a chain of resonators coupled together so that photons propagate along this line. A system with two energy levels was placed in the center of this coupled-resonator waveguide. To facilitate the interaction between light and the two-level system the separation of the two energy levels is close to the photon energy.

When there is a perfect match between the photon energy and the separation of energy levels, the two-level system interacts with the photon; physics then dictates that the photon will be reflected. However, when the energies of the photon and the two-level system do not match, the photon will be transmitted towards the other end of the waveguide.

“Such a two-level system with adjustable energy levels could be used as a switch that controls the propagation of a single photon in the same way a transistor controls the transport of electrons,“ says team member C. P. Sun from The Chinese Academy of Sciences, Beijing.

To realize this two-level system the researchers suggest using so-called superconducting qubits, used in connection with superconducting resonators, which have been demonstrated already, as the waveguides. The separation of the qubit energy levels can be easily controlled and could even be done with another single photon. The researchers have demonstrated theoretically that, with the right choice of system parameters, switching can be easily achieved. “We believe such a system is well within reach of current technology,” says RIKEN’s Lan Zhou.

Reference

1. Zhou, L., Gong, Z. R., Liu, Y.-X., Sun, C. P. & Nori, F. Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide. Physical Review Letters 101, 100501 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/620/
http://www.researchsea.com

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>