Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The single photon switch

12.01.2009
Computing based on photons rather than electrons, on the other hand, promises significantly faster computation and information processing. An international team of researchers has now developed a theoretical system that would allow single photons to be controlled reliably.

Little more than a system of two energy levels could be used to control a single particle of light

Modern electronics is built upon the control of electric charges through an electric field. Computing based on photons rather than electrons, on the other hand, promises significantly faster computation and information processing. An international team of researchers has now developed a theoretical system that would allow single photons to be controlled reliably. “The system we propose can be used as a quantum switch to control the transport of single photons,” says team member Franco Nori from the Advanced Science Institute, Wako, and The University of Michigan, USA.

In contrast to electrons, exercising control over photons is rather difficult to achieve, because light travels at high speeds and hardly interacts with matter. This has hampered the realization of schemes such as all-optical computing. The use of resonators, however, offers a solution to better control the way light propagates. Resonators are small cavities, bound by mirrors at both ends that bounce light back and only occasionally let light out.

As reported in the journal Physical Review Letters (1), the researchers studied a chain of resonators coupled together so that photons propagate along this line. A system with two energy levels was placed in the center of this coupled-resonator waveguide. To facilitate the interaction between light and the two-level system the separation of the two energy levels is close to the photon energy.

When there is a perfect match between the photon energy and the separation of energy levels, the two-level system interacts with the photon; physics then dictates that the photon will be reflected. However, when the energies of the photon and the two-level system do not match, the photon will be transmitted towards the other end of the waveguide.

“Such a two-level system with adjustable energy levels could be used as a switch that controls the propagation of a single photon in the same way a transistor controls the transport of electrons,“ says team member C. P. Sun from The Chinese Academy of Sciences, Beijing.

To realize this two-level system the researchers suggest using so-called superconducting qubits, used in connection with superconducting resonators, which have been demonstrated already, as the waveguides. The separation of the qubit energy levels can be easily controlled and could even be done with another single photon. The researchers have demonstrated theoretically that, with the right choice of system parameters, switching can be easily achieved. “We believe such a system is well within reach of current technology,” says RIKEN’s Lan Zhou.

Reference

1. Zhou, L., Gong, Z. R., Liu, Y.-X., Sun, C. P. & Nori, F. Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide. Physical Review Letters 101, 100501 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/620/
http://www.researchsea.com

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>