Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The single photon switch

12.01.2009
Computing based on photons rather than electrons, on the other hand, promises significantly faster computation and information processing. An international team of researchers has now developed a theoretical system that would allow single photons to be controlled reliably.

Little more than a system of two energy levels could be used to control a single particle of light

Modern electronics is built upon the control of electric charges through an electric field. Computing based on photons rather than electrons, on the other hand, promises significantly faster computation and information processing. An international team of researchers has now developed a theoretical system that would allow single photons to be controlled reliably. “The system we propose can be used as a quantum switch to control the transport of single photons,” says team member Franco Nori from the Advanced Science Institute, Wako, and The University of Michigan, USA.

In contrast to electrons, exercising control over photons is rather difficult to achieve, because light travels at high speeds and hardly interacts with matter. This has hampered the realization of schemes such as all-optical computing. The use of resonators, however, offers a solution to better control the way light propagates. Resonators are small cavities, bound by mirrors at both ends that bounce light back and only occasionally let light out.

As reported in the journal Physical Review Letters (1), the researchers studied a chain of resonators coupled together so that photons propagate along this line. A system with two energy levels was placed in the center of this coupled-resonator waveguide. To facilitate the interaction between light and the two-level system the separation of the two energy levels is close to the photon energy.

When there is a perfect match between the photon energy and the separation of energy levels, the two-level system interacts with the photon; physics then dictates that the photon will be reflected. However, when the energies of the photon and the two-level system do not match, the photon will be transmitted towards the other end of the waveguide.

“Such a two-level system with adjustable energy levels could be used as a switch that controls the propagation of a single photon in the same way a transistor controls the transport of electrons,“ says team member C. P. Sun from The Chinese Academy of Sciences, Beijing.

To realize this two-level system the researchers suggest using so-called superconducting qubits, used in connection with superconducting resonators, which have been demonstrated already, as the waveguides. The separation of the qubit energy levels can be easily controlled and could even be done with another single photon. The researchers have demonstrated theoretically that, with the right choice of system parameters, switching can be easily achieved. “We believe such a system is well within reach of current technology,” says RIKEN’s Lan Zhou.

Reference

1. Zhou, L., Gong, Z. R., Liu, Y.-X., Sun, C. P. & Nori, F. Controllable Scattering of a Single Photon inside a One-Dimensional Resonator Waveguide. Physical Review Letters 101, 100501 (2008).

The corresponding author for this highlight is based at the RIKEN Digital Materials Team

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/620/
http://www.researchsea.com

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>