Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Shift in simulation superiority

05.05.2009
New report highlights strengths and weaknesses in US high-end computer simulations relative to international counterparts

Science and engineering are advancing rapidly in part due to ever more powerful computer simulations, yet the most advanced supercomputers require programming skills that all too few U.S. researchers possess. At the same time, affordable computers and committed national programs outside the U.S. are eroding American competitiveness in number of simulation-driven fields.

These are some of the key findings in the International Assessment of Research and Development in Simulation-Based Engineering and Science, released on Apr. 22, 2009, by the World Technology Evaluation Center (WTEC).

"The startling news was how quickly our assumptions have to change," said Phillip Westmoreland, program director for combustion, fire and plasma systems at the National Science Foundation (NSF) and one of the sponsors of the report. "Because computer chip speeds aren't increasing, hundreds and thousands of chips are being ganged together, each one with many processors. New ways of programming are necessary."

Like other WTEC studies, this study was led by a team of leading researchers from a range of simulation science and engineering disciplines and involved site visits to research facilities around the world.

The nearly 400-page, multi-agency report highlights several areas in which the U.S. still maintains a competitive edge, including the development of novel algorithms, but also highlights endeavors that are increasingly driven by efforts in Europe or Asia, such as the creation and simulation of new materials from first principles.

"Some of the new high-powered computers are as common as gaming computers, so key breakthroughs and leadership could come from anywhere in the world," added Westmoreland. "Last week's research-directions workshop brought together engineers and scientists from around the country, developing ideas that would keep the U.S. at the vanguard as we face these changes."

Sharon Glotzer of the University of Michigan chaired the panel of experts that executed the studies of the Asian, European and U.S. simulation research activities. Peter Cummings of both Vanderbilt University and Oak Ridge National Laboratory co-authored the report with Glotzer and seven other panelists, and the two co-chaired the Apr. 22-23, 2009, workshop with Glotzer that provided agencies initial guidance on strategic directions.

"Progress in simulation-based engineering and science holds great promise for the pervasive advancement of knowledge and understanding through discovery," said Clark Cooper, program director for materials and surface engineering at NSF and also a sponsor of the report. "We expect future developments to continue to enhance prediction and decision making in the presence of uncertainty."

The WTEC study was funded by the National Science Foundation, Department of Defense, National Aeronautics and Space Administration, National Institutes of Health, National Institute of Standards and Technology and the Department of Energy

Joshua A. Chamot | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>