Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites unlock secret to northern India's vanishing water

17.08.2009
Using NASA satellite data, scientists have found that groundwater levels in northern India have been declining by as much as one foot per year over the past decade. Researchers concluded the loss is almost entirely due to human activity.

More than 26 cubic miles of groundwater disappeared from aquifers in areas of Haryana, Punjab, Rajasthan and the nation's capitol territory of Delhi, between 2002 and 2008. This is enough water to fill Lake Mead, the largest manmade reservoir in the United States, three times.

A team of hydrologists led by Matt Rodell of NASA's Goddard Space Flight Center in Greenbelt, Md., found that northern India's underground water supply is being pumped and consumed by human activities, such as irrigating cropland, and is draining aquifers faster than natural processes can replenish them. The results of this research were published today in Nature.

The finding is based on data from NASA's Gravity Recovery and Climate Experiment (GRACE), a pair of satellites that sense changes in Earth's gravity field and associated mass distribution, including water masses stored above or below Earth's surface. As the twin satellites orbit 300 miles above Earth's surface, their positions change relative to each other in response to variations in the pull of gravity.

Changes in underground water masses affect gravity enough to provide a signal that can be measured by the GRACE spacecraft. After accounting for other mass variations, such changes in gravity are translated into an equivalent change in water.

"Using GRACE satellite observations, we can observe and monitor water storage changes in critical areas of the world, from one month to the next, without leaving our desks," said study co-author Isabella Velicogna of NASA's Jet Propulsion Laboratory in Pasadena, Calif., and the University of California, Irvine.

Groundwater comes from the natural percolation of precipitation and other surface waters down through Earth's soil and rock, accumulating in cavities and layers of porous rock, gravel, sand or clay. Groundwater levels respond slowly to changes in weather and can take months or years to replenish once pumped for irrigation or other uses.

Data provided by India's Ministry of Water Resources to the NASA-funded researchers suggested groundwater use across India was exceeding natural replenishment, but the regional rate of depletion was unknown. Rodell and colleagues analyzed six years of monthly GRACE data for northern India to produce a time series of water storage changes beneath the land surface.

"We don't know the absolute volume of water in the northern Indian aquifers, but GRACE provides strong evidence that current rates of water extraction are not sustainable," said Rodell. "The region has become dependent on irrigation to maximize agricultural productivity. If measures are not taken to ensure sustainable groundwater usage, the consequences for the 114 million residents of the region may include a collapse of agricultural output and severe shortages of potable water."

Researchers examined data and models of soil moisture, lake and reservoir storage, vegetation and glaciers in the nearby Himalayas in order to confirm that the apparent groundwater trend was real. The loss is particularly alarming because it occurred when there were no unusual trends in rainfall. In fact, rainfall was slightly above normal for the period. The only influence they couldn't rule out was human.

"For the first time, we can observe water use on land with no additional ground-based data collection," said co-author James Famiglietti of the University of California, Irvine. "This is critical because in many developing countries, where hydrological data are both sparse and hard to access, space-based methods provide perhaps the only opportunity to assess changes in fresh water availability across large regions."

GRACE is a partnership between NASA and the German Aerospace Center, DLR. The University of Texas Center for Space Research in Austin has overall GRACE mission responsibility. GRACE was launched in 2002.

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/india_water.html
http://www.nasa.gov/home/hqnews/2009/aug/HQ_09-185_India_water.html

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>