Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Satellites unlock secret to northern India's vanishing water

17.08.2009
Using NASA satellite data, scientists have found that groundwater levels in northern India have been declining by as much as one foot per year over the past decade. Researchers concluded the loss is almost entirely due to human activity.

More than 26 cubic miles of groundwater disappeared from aquifers in areas of Haryana, Punjab, Rajasthan and the nation's capitol territory of Delhi, between 2002 and 2008. This is enough water to fill Lake Mead, the largest manmade reservoir in the United States, three times.

A team of hydrologists led by Matt Rodell of NASA's Goddard Space Flight Center in Greenbelt, Md., found that northern India's underground water supply is being pumped and consumed by human activities, such as irrigating cropland, and is draining aquifers faster than natural processes can replenish them. The results of this research were published today in Nature.

The finding is based on data from NASA's Gravity Recovery and Climate Experiment (GRACE), a pair of satellites that sense changes in Earth's gravity field and associated mass distribution, including water masses stored above or below Earth's surface. As the twin satellites orbit 300 miles above Earth's surface, their positions change relative to each other in response to variations in the pull of gravity.

Changes in underground water masses affect gravity enough to provide a signal that can be measured by the GRACE spacecraft. After accounting for other mass variations, such changes in gravity are translated into an equivalent change in water.

"Using GRACE satellite observations, we can observe and monitor water storage changes in critical areas of the world, from one month to the next, without leaving our desks," said study co-author Isabella Velicogna of NASA's Jet Propulsion Laboratory in Pasadena, Calif., and the University of California, Irvine.

Groundwater comes from the natural percolation of precipitation and other surface waters down through Earth's soil and rock, accumulating in cavities and layers of porous rock, gravel, sand or clay. Groundwater levels respond slowly to changes in weather and can take months or years to replenish once pumped for irrigation or other uses.

Data provided by India's Ministry of Water Resources to the NASA-funded researchers suggested groundwater use across India was exceeding natural replenishment, but the regional rate of depletion was unknown. Rodell and colleagues analyzed six years of monthly GRACE data for northern India to produce a time series of water storage changes beneath the land surface.

"We don't know the absolute volume of water in the northern Indian aquifers, but GRACE provides strong evidence that current rates of water extraction are not sustainable," said Rodell. "The region has become dependent on irrigation to maximize agricultural productivity. If measures are not taken to ensure sustainable groundwater usage, the consequences for the 114 million residents of the region may include a collapse of agricultural output and severe shortages of potable water."

Researchers examined data and models of soil moisture, lake and reservoir storage, vegetation and glaciers in the nearby Himalayas in order to confirm that the apparent groundwater trend was real. The loss is particularly alarming because it occurred when there were no unusual trends in rainfall. In fact, rainfall was slightly above normal for the period. The only influence they couldn't rule out was human.

"For the first time, we can observe water use on land with no additional ground-based data collection," said co-author James Famiglietti of the University of California, Irvine. "This is critical because in many developing countries, where hydrological data are both sparse and hard to access, space-based methods provide perhaps the only opportunity to assess changes in fresh water availability across large regions."

GRACE is a partnership between NASA and the German Aerospace Center, DLR. The University of Texas Center for Space Research in Austin has overall GRACE mission responsibility. GRACE was launched in 2002.

Steve Cole | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/india_water.html
http://www.nasa.gov/home/hqnews/2009/aug/HQ_09-185_India_water.html

More articles from Information Technology:

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>