Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rome Was Built in a Day, with Hundreds of Thousands of Digital Photos

17.09.2009
The ancient city of Rome was not built in a day. It took nearly a decade to build the Colosseum, and almost a century to construct St. Peter's Basilica. But now the city, including these landmarks, can be digitized in just a matter of hours.

A new computer algorithm developed at the University of Washington uses hundreds of thousands of tourist photos to automatically reconstruct an entire city in about a day.

The tool is the most recent in a series developed at the UW to harness the increasingly large digital photo collections available on photo-sharing Web sites. The digital Rome was built from 150,000 tourist photos tagged with the word "Rome" or "Roma" that were downloaded from the popular photo-sharing Web site, Flickr.

Computers analyzed each image and in 21 hours combined them to create a 3-D digital model. With this model a viewer can fly around Rome’s landmarks, from the Trevi Fountain to the Pantheon to the inside of the Sistine Chapel.

"How to match these massive collections of images to each other was a challenge," said Sameer Agarwal, a UW acting assistant professor of computer science and engineering and lead author of a paper being presented in October at the International Conference on Computer Vision in Kyoto, Japan. Until now, he said, "even if we had all the hardware we could get our hands on and then some, a reconstruction using this many photos would take forever."

Earlier versions of the UW photo-stitching technology are known as Photo Tourism. That technology was licensed in 2006 to Microsoft, which now offers it as a free tool called Photosynth.

"With Photosynth and Photo Tourism, we basically reconstruct individual landmarks. Here we're trying to reconstruct entire cities," said co-author Noah Snavely, who developed Photo Tourism as his UW doctoral work and is now an assistant professor at Cornell University.

Other co-authors of the new paper are Rick Szeliski of Microsoft Research, UW computer science professor Steve Seitz and UW graduate student Ian Simon.

In addition to Rome, the team recreated the Croatian coastal city of Dubrovnik, processing 60,000 images in less than 23 hours using a cluster of 350 computers, and Venice, Italy, processing 250,000 images in 65 hours using a cluster of 500 computers. Many historians see Venice as a candidate for digital preservation before water does more damage to the city, the researchers said.

Transitioning from landmarks to cities – going from hundreds of photos to hundreds of thousands of photos – is not trivial. Previous versions of the Photo Tourism software matched each photo to every other photo in the set. But as the number of photos increases the number of matches explodes, increasing with the square of the number of photos. A set of 250,000 images would take at least a year for 500 computers to process, Agarwal said. A million photos would take more than a decade.

The newly developed code works more than a hundred times faster than the previous version. It first establishes likely matches and then concentrates on those parts. The code also uses parallel processing techniques, allowing it to run simultaneously on many computers, or even on remote servers connected through the Internet.

The new, faster code makes it possible to tackle more ambitious projects.

"If a city reconstruction took several months, it would be just about building Rome," Seitz said. "But on a timeline of one day you can methodically start going through all the cities and start building models of them."

This technique could create online maps that offer viewers a virtual-reality experience. The software could build cities for video games automatically, instead of doing so by hand. It also might be used in architecture for digital preservation of cities, or integrated with online maps, Seitz said.

In the near term, the “Rome in a Day” code could be used with Photo Tourism, Photosynth or other software designed to view the model output.

The research was supported by the National Science Foundation, the Office of Naval Research and its Spawar lab, Microsoft Research, and Google.

For more information, contact Agarwal at 206-543-6876 or sagarwal@cs.washington.edu and Seitz at 206-616-9431 or seitz@cs.washington.edu.

The project Web site is http://grail.cs.washington.edu/rome/.

Agarwal | Newswise Science News
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>