Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Rome Was Built in a Day, with Hundreds of Thousands of Digital Photos

17.09.2009
The ancient city of Rome was not built in a day. It took nearly a decade to build the Colosseum, and almost a century to construct St. Peter's Basilica. But now the city, including these landmarks, can be digitized in just a matter of hours.

A new computer algorithm developed at the University of Washington uses hundreds of thousands of tourist photos to automatically reconstruct an entire city in about a day.

The tool is the most recent in a series developed at the UW to harness the increasingly large digital photo collections available on photo-sharing Web sites. The digital Rome was built from 150,000 tourist photos tagged with the word "Rome" or "Roma" that were downloaded from the popular photo-sharing Web site, Flickr.

Computers analyzed each image and in 21 hours combined them to create a 3-D digital model. With this model a viewer can fly around Rome’s landmarks, from the Trevi Fountain to the Pantheon to the inside of the Sistine Chapel.

"How to match these massive collections of images to each other was a challenge," said Sameer Agarwal, a UW acting assistant professor of computer science and engineering and lead author of a paper being presented in October at the International Conference on Computer Vision in Kyoto, Japan. Until now, he said, "even if we had all the hardware we could get our hands on and then some, a reconstruction using this many photos would take forever."

Earlier versions of the UW photo-stitching technology are known as Photo Tourism. That technology was licensed in 2006 to Microsoft, which now offers it as a free tool called Photosynth.

"With Photosynth and Photo Tourism, we basically reconstruct individual landmarks. Here we're trying to reconstruct entire cities," said co-author Noah Snavely, who developed Photo Tourism as his UW doctoral work and is now an assistant professor at Cornell University.

Other co-authors of the new paper are Rick Szeliski of Microsoft Research, UW computer science professor Steve Seitz and UW graduate student Ian Simon.

In addition to Rome, the team recreated the Croatian coastal city of Dubrovnik, processing 60,000 images in less than 23 hours using a cluster of 350 computers, and Venice, Italy, processing 250,000 images in 65 hours using a cluster of 500 computers. Many historians see Venice as a candidate for digital preservation before water does more damage to the city, the researchers said.

Transitioning from landmarks to cities – going from hundreds of photos to hundreds of thousands of photos – is not trivial. Previous versions of the Photo Tourism software matched each photo to every other photo in the set. But as the number of photos increases the number of matches explodes, increasing with the square of the number of photos. A set of 250,000 images would take at least a year for 500 computers to process, Agarwal said. A million photos would take more than a decade.

The newly developed code works more than a hundred times faster than the previous version. It first establishes likely matches and then concentrates on those parts. The code also uses parallel processing techniques, allowing it to run simultaneously on many computers, or even on remote servers connected through the Internet.

The new, faster code makes it possible to tackle more ambitious projects.

"If a city reconstruction took several months, it would be just about building Rome," Seitz said. "But on a timeline of one day you can methodically start going through all the cities and start building models of them."

This technique could create online maps that offer viewers a virtual-reality experience. The software could build cities for video games automatically, instead of doing so by hand. It also might be used in architecture for digital preservation of cities, or integrated with online maps, Seitz said.

In the near term, the “Rome in a Day” code could be used with Photo Tourism, Photosynth or other software designed to view the model output.

The research was supported by the National Science Foundation, the Office of Naval Research and its Spawar lab, Microsoft Research, and Google.

For more information, contact Agarwal at 206-543-6876 or sagarwal@cs.washington.edu and Seitz at 206-616-9431 or seitz@cs.washington.edu.

The project Web site is http://grail.cs.washington.edu/rome/.

Agarwal | Newswise Science News
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>