Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot scientist becomes first machine to discover new scientific knowledge

03.04.2009
Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have created a Robot Scientist which the researchers believe is the first machine to have independently discovered new scientific knowledge.

The robot, called Adam, is a computer system that fully automates the scientific process. The work will be published today (03 April 2009) in the journal Science.

Prof Ross King, who led the research at Aberystwyth University, said: "Ultimately we hope to have teams of human and robot scientists working together in laboratories".

The scientists at Aberystwyth University and the University of Cambridge designed Adam to carry out each stage of the scientific process automatically without the need for further human intervention. The robot has discovered simple but new scientific knowledge about the genomics of the baker's yeast Saccharomyces cerevisiae, an organism that scientists use to model more complex life systems. The researchers have used separate manual experiments to confirm that Adam's hypotheses were both novel and correct.

"Because biological organisms are so complex it is important that the details of biological experiments are recorded in great detail. This is difficult and irksome for human scientists, but easy for Robot Scientists."

Using artificial intelligence, Adam hypothesised that certain genes in baker's yeast code for specific enzymes which catalyse biochemical reactions in yeast. The robot then devised experiments to test these predictions, ran the experiments using laboratory robotics, interpreted the results and repeated the cycle.

Adam is a still a prototype, but Prof King's team believe that their next robot, Eve, holds great promise for scientists searching for new drugs to combat diseases such as malaria and schistosomiasis, an infection caused by a type of parasitic worm in the tropics.

Prof King continued: "If science was more efficient it would be better placed to help solve society's problems. One way to make science more efficient is through automation. Automation was the driving force behind much of the 19th and 20th century progress, and this is likely to continue."

Prof Douglas Kell, BBSRC Chief Executive, said: "Computers play a fundamental role in the scientific process, which is becoming increasingly automated, for instance in drug design and DNA sequencing. This has led to more scientific data, increasingly available on the web, which in turn requires an increased use of computers to analyse these data. Robot scientists could provide a useful tool for managing such data and knowledge, making scientific procedures easier and more efficient. This kind of learning will become even more important as we move further towards integrative and predictive biology in the era of Web 2.0 and the Semantic Web."

Contact

BBSRC Media Office
Nancy Mendoza, Tel: 01793 413355, email: nancy.mendoza@bbsrc.ac.uk
Matt Goode, Tel: 01793 413299, email: matt.goode@bbsrc.ac.uk

Katrina Pavelin | EurekAlert!
Further information:
http://www.bbsrc.ac.uk

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>