Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robot Provides 3-D Images of Dangerous Locations

23.02.2010
Soldiers and first responders may soon have a better way to evaluate the interior of dangerous structures, thanks to a joint project between Missouri University of Science and Technology and the University of Missouri-Columbia.

As part of the project, which began in 2008, students at Missouri S&T have built a remote-controlled robot that is equipped with an infrared camera and LIDAR (light detection and ranging) technology. Like radar, LIDAR sends out signals, in this case millions of laser points, to bounce off objects and provide feedback. The LIDAR-equipped robot then wirelessly relays detailed images to a laptop computer.

“We can get a 3-D map of rooms by sending the robot inside or having it look through a window,” says Dr. Norbert Maerz, associate professor of geological engineering at Missouri S&T. “Even when you can’t see through windows, you can still scan through them with LIDAR. Using this information, soldiers or first responders could evaluate safety issues and determine strategies.”

Maerz and Dr. Ye Duan, an associate professor of computer science at MU, are the primary investigators on the research project, which was funded at a total cost of $400,000 by the Leonard Wood Institute.

Maerz and his students have used their prototype to map the inside of houses, businesses, Missouri S&T buildings, chambers in S&T’s Experimental Mine and cave passages in the Mark Twain National Forest.

“In theory, you could deploy this technology inside caves where terrorists might be hiding,” Maerz says.

Maerz sends sample images to Duan in Columbia for advanced data analysis and 3-D reconstruction. The technology is capable of revealing detailed information regarding floorplans, for instance, but it can also “see” people and objects inside a space.

“Once you have the images, you can zoom in on objects and look at things from different angles,” Maerz says. “You can make precise measurements of any object and assess dimensions.”

The technology is further capable of detecting structural damage like cracks in beams, which would allow engineers to make safety recommendations following natural disasters.

“This could definitely be used in disaster relief situations,” Maerz says. “The main idea is to assess safety in dangerous areas.”

The student-built robot at S&T resembles the rovers NASA has sent to Mars. But the S&T prototype, which weighs approximately 200 pounds, only cost about $25,000 to assemble. Maerz envisions commercial models being smaller, lighter and more flexible.

Lance Feyh | Newswise Science News
Further information:
http://www.mst.edu

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>