Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers take virus-tracking software worldwide

23.05.2012
Project allows new forms of client software to join genetic surveillance

A biomedical informatics researcher who tracks dangerous viruses as they spread around the globe has restructured his innovative tracking software to promote even wider use of the program around the world.

Associate Professor Daniel Janies, Ph.D., an expert in computational genomics at the Wexner Medical Center at The Ohio State University (OSU), is working with software engineers at the Ohio Supercomputer Center (OSC) to expand the reach of SUPRAMAP (supramap.org), a web-based application that synthesizes large, diverse datasets so that researchers can better understand the spread of infectious diseases across hosts and geography. By separating SUPRAMAP's client application from the underlying server software, the goal is to reconfigure the server in a way that researchers and public safety officials can develop other front-end applications that draw on the logic and computing resources of SUPRAMAP.

Janies and his colleagues at Ohio State, the American Museum of Natural History (AMNH) and OSC developed SUPRAMAP in 2007 to track the spread and evolution of pandemic (H1N1) and avian influenza (H5N1).

“Using SUPRAMAP, we initially developed maps that illustrated the spread of drug-resistant influenza and host shifts in H1N1 and H5N1 influenza and in coronaviruses, such as SARS,” said Janies. “SUPRAMAP allows the user to track strains carrying key mutations in a geospatial browser such as Google EarthTM. Our software allows public health scientists to update and view maps on the evolution and spread of pathogens.”

The original implementation of SUPRAMAP was built with a single client that was tightly coupled to the server software.

“We now have decoupled the server from the original client to provide a modular web service for POY, (poyws.org) an open-source, freely available phylogenetic analysis program developed at AMNH. The web service can be used by other researchers with new ideas, data, and clients to create novel applications,” said Ward Wheeler, Ph.D., curator-in-charge of scientific computing at AMNH and a coauthor with Janies and others on a recent article about the project in the journal Cladistics.

“To demonstrate the POY web service, we have produced a new client software application, GEOGENES (www.geogenes.org)”, said Wheeler. “Unlike in SUPRAMAP, in which the user is required to create and upload data files, in GEOGENES the user works from a graphical interface to query a curated dataset, thus freeing the user from managing files.”


Currently this service is hosted on large shared systems at OSC, the center’s flagship HP Intel Xeon Oakley Cluster, their IBM Opteron Glenn Cluster and on a smaller dedicated cluster at Ohio State’s Wexner Medical Center.

“Decoupling the client from the server provides another advantage in that the implementation of the server can change to take advantage of advances in computing technology,” noted Thomas Bitterman, a senior software engineer at OSC and co-author of the journal article. “For example, the recent addition of the Oakley Cluster at OSC has made available a large set of GPUs that could result in performance improvements.”

To give their new software implementation a proper road test, the researchers examined groups of key mutations in a pathogen they hadn’t tracked before – the H7 avian influenza virus. Infection of humans by the H7 virus is rare, but it has occurred among people who have direct contact with infected poultry.

“H7 influenza, like H5N1 is largely an avian virus, but infects humans periodically, and therefore we wanted to see how it evolves,” said Janies. “We have shown that pathogenicity of the H7 influenza is highly labile on a molecular evolutionary level and has occurred independently in many places around the world. Now that the H5N1 papers detailing transmission among mammals have been published, we can next pinpoint the natural geographic distribution of key sets of mutations that could lead to human-to-human transmission. Our maps will allow scientists to better deploy public health resources to protect citizens and forces in the field.”

Grant funding through the U.S. Army Research Laboratory and Office supports this Innovation Group on Global Infectious Disease Research (gidr.osu.edu) project. Support for the computational requirements of the project comes from AMNH and OSC. Ohio State’s Wexner Medical Center, Department of Biomedical Informatics and offices of Academic Affairs and Research provide additional support.

____________
The Ohio Supercomputer Center (OSC), a member of the Ohio Technology Consortium of the Ohio Board of Regents, addresses the rising computational demands of academic and industrial research communities by providing a robust shared infrastructure and proven expertise in advanced modeling, simulation and analysis. OSC empowers scientists with the vital resources essential to make extraordinary discoveries and innovations, partners with businesses and industry to leverage computational science as a competitive force in the global knowledge economy, and leads efforts to equip the workforce with the key technology skills required to secure 21st century jobs. For more, visit www.osc.edu.

The Department of Biomedical Informatics at the Wexner Medical Center at The Ohio State University is a cross-disciplinary department, focusing on scientific data integration, imaging and simulation, medical informatics, computational biology and bioinformatics. The BMI staff leads the advancement of health and biomedicine through the development, application and dissemination of novel biomedical informatics theories and methods capable of driving biological discovery, generating and translating knowledge and advancing personalized healthcare. For more, visit biomed.osu.edu/bmi.

The American Museum of Natural History, founded in 1869, is one of the world’s preeminent scientific, educational, and cultural institutions. The Museum encompasses 45 permanent exhibition halls, including the Rose Center for Earth and Space and the Hayden Planetarium, as well as galleries for temporary exhibitions. Five active research divisions and three cross-disciplinary centers support 200 scientists, whose work draws on a world-class permanent collection of more than 32 million specimens and artifacts, including specialized collections for frozen tissue and genomic and astrophysical data, as well as one of the largest natural history libraries in the Western Hemisphere.. The Science Computer Cluster Facility is a major resource used by museum research scientists, postdoctoral fellows, and graduate and undergraduate students for high-end capability computing in the areas of biology, genomics, astrophysics, paleontology and anthropology. For more, visit research.amnh.org/scicomp/.

Mr. Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>