Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Develop Next-generation Antivirus System

08.08.2008
Antivirus software on your personal computer could become a thing of the past thanks to a new "cloud computing" approach to malicious software detection developed at the University of Michigan.

Cloud computing refers to applications and services provided seamlessly on the Internet.

Traditional antivirus software is installed on millions of individual computers around the world but according to researchers, antivirus software from popular vendors is increasingly ineffective.

The researchers observed malware --malicious software--detection rates as low as 35 percent against the most recent threats and an average window of vulnerability exceeding 48 days. That means new threats went undetected for an average of seven weeks. The computer scientists also found severe vulnerabilities in the antivirus engines themselves.

... more about:
»Antivirus »Cloud »Engineering »Next-generation

The researchers' new approach, called CloudAV, moves antivirus functionality into the "network cloud" and off personal computers. CloudAV analyzes suspicious files using multiple antivirus and behavioral detection programs simultaneously.

"CloudAV virtualizes and parallelizes detection functionality with multiple antivirus engines, significantly increasing overall protection," said Farnam Jahanian, professor of computer science and engineering in the Department of Electrical Engineering and Computer Science.

Jahanian, along with doctoral candidate Jon Oberheide and postdoctoral fellow Evan Cooke, both in the Department of Electrical Engineering and Computer Science, recently presented a paper on the new approach at the USENIX Security Symposium.

To develop this novel approach, the researchers evaluated 12 traditional antivirus software programs against 7,220 malware samples, including viruses, collected over a year. The vendors tested were: Avast, AVG, BitDefender, ClamAV, CWSandbox, F-Prot, F-Secure, Kaspersky, McAfee, Norman Sandbox, Symantec and Trend Micro.

Traditional antivirus software that resides on a personal computer checks documents and programs as they are accessed. Because of performance constraints and program incompatibilities, only one antivirus detector is typically used at a time.

CloudAV, however, can support a large number of malicious software detectors that act in parallel to analyze a single incoming file. Each detector operates in its own virtual machine, so the technical incompatibilities and security issues are resolved, Oberheide said.

CloudAV is accessible to any computer or mobile device on the network that runs a simple software agent. Each time a computer or device receives a new document or program, that item is automatically detected and sent to the antivirus cloud for analysis. The CloudAV system the researchers built uses 12 different detectors that act together to tell the inquiring computer whether the item is safe to open.

CloudAV also caches analysis results, speeding up the process compared with traditional antivirus software. This could be useful for workplaces, for example, where multiple employees might access the same document. The new approach also includes what the developers call "retrospective detection," which scans its file access history when a new threat is identified. This allows it to catch previously-missed infections earlier.

The researchers see promising opportunities in applying CloudAV to cell phones and other mobile devices that aren't robust enough to carry powerful antivirus software.

The paper is called: CloudAV: N-Version Antivirus in the Network Cloud.

For more information:

CloudAV Project Summary: http://www.eecs.umich.edu/fjgroup/cloudav/

USENIX Security Symposium: http://www.usenix.org/events/sec08/

Michigan Engineering:
The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference.

Nicole Casal Moore | Newswise Science News
Further information:
http://www.engin.umich.edu

Further reports about: Antivirus Cloud Engineering Next-generation

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>