Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Finds First Evolutionary Branching for Bilateral Animals

28.09.2009
In the most computationally intensive phylogenetic analysis to date, an international research team led by Brown University has found the first evolutionary branching for bilateral animals.

The researchers determined that the flatworm group Acoelomorpha is a product of the deepest split within the bilateral creatures — multicelled organisms that, like humans, have symmetrical body forms. Results appear online in Proceedings of the Royal Society B.

When it comes to understanding a critical junction in animal evolution, some short, simple flatworms have been a real thorn in scientists’ sides. Specialists have jousted over the proper taxonomic placement of a group of worms called Acoelomorpha. This collection of worms, which comprises roughly 350 species, is part of a much larger group called bilateral animals, organisms that have symmetrical body forms, including humans, insects and worms. The question about acoelomorpha, was: Where do they fit in?

To scientists, acoelomorpha, has been enigmatic, a “rogue animal,” said Casey Dunn, an evolutionary biologist at Brown University. “It has been wandering throughout the animal tree of life.”

The worm wanders no more. Through a laborious genetic sequencing analysis, Dunn and an international team of scientists have settled the long-standing debate and determined that acoelomorpha belongs as a sister clade to other bilateral animals. The finding is significant, Dunn said, because it shows the worm is a product of the deepest split within the bilateral animals, the first evolutionary divergence within the group. Because of that, scientists have gained a key insight into the most recent common ancestor to bilaterians, a species that remains unknown.

The worm is “as distant as an animal can be in bilateria and still be a bilaterian,” said Dunn, assistant professor of biology. “So, now we have two perspectives to (find out about) this common ancestor, the acoelomorphs and all the other bilateral animals.”

The results appear online this week in the Proceedings of the Royal Society B.

The team, composed of 17 scientists from the United States, France Germany, Sweden, Spain and the United Kingdom, had two more interesting findings:

The debate appears to be over for Xenoturbella, a type of marine worm whose ancestral affiliation had been tossed between worms and mollusks. The researchers reported their genetic analysis shows diminishing evidence for placing xenoturbella within Deuterostomia, one of the major groups within the animal kingdom. Coincidentally, it also shows that xenoturbella may be a close relative to acoelomorpha.

Cycliophora, a single species discovered in 1994 that lives on the bristles surrounding the mouth of the Norway lobster Nephrops norvegicus, has found a home with Entoprocta and Ectoprocta. The researchers base their findings on an analysis that reached further into the genetic makeup of cycliophora than previous studies had done.

The team used a genetic sequencing technique called expressed sequence tags to carry out the phylogenetic studies. The aim of this approach, discusssed in a study led by Dunn that appeared in Nature last year, is to analyze a large number of genes from a large number of animals. For this paper, the researchers looked at 1,487 genes, a 10-fold increase in the number of genes analyzed in previous studies. In all, the researchers logged 2.25 million processor hours on a supercomputer in California to obtain the results. Dunn called the effort the most computationally intensive phylogenetic analysis to date.

Other scientists who contributed to the research are Andreas Hejnol, Mark Martindale and Elaine Seaver, University of Hawaii; Matthias Obst, Goteborg University, Sweden; Alexandros Stamatakis and Michael Ott, Technical University of Munich, Germany; Greg Rouse, Scripps Institution of Oceanography; Gregory Edgecombe, Natural History Museum, London; Pedro Martinez and Jaume Baguna, Universitat de Barcelona, Spain; Xavier Bailly, Station Biologique de Roscoff, France; Ulf Jondelius, Swedish Museum of Natural History; Matthias Wiens and Werner Muller, Johannes-Gutenberg-University Mainz, Germany; Ward Wheeler, American Museum of Natural History; and Gonzalo Giribet, Harvard University.

The research was funded by the National Science Foundation and the San Diego Supercomputing Center.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>