Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Finds First Evolutionary Branching for Bilateral Animals

28.09.2009
In the most computationally intensive phylogenetic analysis to date, an international research team led by Brown University has found the first evolutionary branching for bilateral animals.

The researchers determined that the flatworm group Acoelomorpha is a product of the deepest split within the bilateral creatures — multicelled organisms that, like humans, have symmetrical body forms. Results appear online in Proceedings of the Royal Society B.

When it comes to understanding a critical junction in animal evolution, some short, simple flatworms have been a real thorn in scientists’ sides. Specialists have jousted over the proper taxonomic placement of a group of worms called Acoelomorpha. This collection of worms, which comprises roughly 350 species, is part of a much larger group called bilateral animals, organisms that have symmetrical body forms, including humans, insects and worms. The question about acoelomorpha, was: Where do they fit in?

To scientists, acoelomorpha, has been enigmatic, a “rogue animal,” said Casey Dunn, an evolutionary biologist at Brown University. “It has been wandering throughout the animal tree of life.”

The worm wanders no more. Through a laborious genetic sequencing analysis, Dunn and an international team of scientists have settled the long-standing debate and determined that acoelomorpha belongs as a sister clade to other bilateral animals. The finding is significant, Dunn said, because it shows the worm is a product of the deepest split within the bilateral animals, the first evolutionary divergence within the group. Because of that, scientists have gained a key insight into the most recent common ancestor to bilaterians, a species that remains unknown.

The worm is “as distant as an animal can be in bilateria and still be a bilaterian,” said Dunn, assistant professor of biology. “So, now we have two perspectives to (find out about) this common ancestor, the acoelomorphs and all the other bilateral animals.”

The results appear online this week in the Proceedings of the Royal Society B.

The team, composed of 17 scientists from the United States, France Germany, Sweden, Spain and the United Kingdom, had two more interesting findings:

The debate appears to be over for Xenoturbella, a type of marine worm whose ancestral affiliation had been tossed between worms and mollusks. The researchers reported their genetic analysis shows diminishing evidence for placing xenoturbella within Deuterostomia, one of the major groups within the animal kingdom. Coincidentally, it also shows that xenoturbella may be a close relative to acoelomorpha.

Cycliophora, a single species discovered in 1994 that lives on the bristles surrounding the mouth of the Norway lobster Nephrops norvegicus, has found a home with Entoprocta and Ectoprocta. The researchers base their findings on an analysis that reached further into the genetic makeup of cycliophora than previous studies had done.

The team used a genetic sequencing technique called expressed sequence tags to carry out the phylogenetic studies. The aim of this approach, discusssed in a study led by Dunn that appeared in Nature last year, is to analyze a large number of genes from a large number of animals. For this paper, the researchers looked at 1,487 genes, a 10-fold increase in the number of genes analyzed in previous studies. In all, the researchers logged 2.25 million processor hours on a supercomputer in California to obtain the results. Dunn called the effort the most computationally intensive phylogenetic analysis to date.

Other scientists who contributed to the research are Andreas Hejnol, Mark Martindale and Elaine Seaver, University of Hawaii; Matthias Obst, Goteborg University, Sweden; Alexandros Stamatakis and Michael Ott, Technical University of Munich, Germany; Greg Rouse, Scripps Institution of Oceanography; Gregory Edgecombe, Natural History Museum, London; Pedro Martinez and Jaume Baguna, Universitat de Barcelona, Spain; Xavier Bailly, Station Biologique de Roscoff, France; Ulf Jondelius, Swedish Museum of Natural History; Matthias Wiens and Werner Muller, Johannes-Gutenberg-University Mainz, Germany; Ward Wheeler, American Museum of Natural History; and Gonzalo Giribet, Harvard University.

The research was funded by the National Science Foundation and the San Diego Supercomputing Center.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>