Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Team Finds First Evolutionary Branching for Bilateral Animals

28.09.2009
In the most computationally intensive phylogenetic analysis to date, an international research team led by Brown University has found the first evolutionary branching for bilateral animals.

The researchers determined that the flatworm group Acoelomorpha is a product of the deepest split within the bilateral creatures — multicelled organisms that, like humans, have symmetrical body forms. Results appear online in Proceedings of the Royal Society B.

When it comes to understanding a critical junction in animal evolution, some short, simple flatworms have been a real thorn in scientists’ sides. Specialists have jousted over the proper taxonomic placement of a group of worms called Acoelomorpha. This collection of worms, which comprises roughly 350 species, is part of a much larger group called bilateral animals, organisms that have symmetrical body forms, including humans, insects and worms. The question about acoelomorpha, was: Where do they fit in?

To scientists, acoelomorpha, has been enigmatic, a “rogue animal,” said Casey Dunn, an evolutionary biologist at Brown University. “It has been wandering throughout the animal tree of life.”

The worm wanders no more. Through a laborious genetic sequencing analysis, Dunn and an international team of scientists have settled the long-standing debate and determined that acoelomorpha belongs as a sister clade to other bilateral animals. The finding is significant, Dunn said, because it shows the worm is a product of the deepest split within the bilateral animals, the first evolutionary divergence within the group. Because of that, scientists have gained a key insight into the most recent common ancestor to bilaterians, a species that remains unknown.

The worm is “as distant as an animal can be in bilateria and still be a bilaterian,” said Dunn, assistant professor of biology. “So, now we have two perspectives to (find out about) this common ancestor, the acoelomorphs and all the other bilateral animals.”

The results appear online this week in the Proceedings of the Royal Society B.

The team, composed of 17 scientists from the United States, France Germany, Sweden, Spain and the United Kingdom, had two more interesting findings:

The debate appears to be over for Xenoturbella, a type of marine worm whose ancestral affiliation had been tossed between worms and mollusks. The researchers reported their genetic analysis shows diminishing evidence for placing xenoturbella within Deuterostomia, one of the major groups within the animal kingdom. Coincidentally, it also shows that xenoturbella may be a close relative to acoelomorpha.

Cycliophora, a single species discovered in 1994 that lives on the bristles surrounding the mouth of the Norway lobster Nephrops norvegicus, has found a home with Entoprocta and Ectoprocta. The researchers base their findings on an analysis that reached further into the genetic makeup of cycliophora than previous studies had done.

The team used a genetic sequencing technique called expressed sequence tags to carry out the phylogenetic studies. The aim of this approach, discusssed in a study led by Dunn that appeared in Nature last year, is to analyze a large number of genes from a large number of animals. For this paper, the researchers looked at 1,487 genes, a 10-fold increase in the number of genes analyzed in previous studies. In all, the researchers logged 2.25 million processor hours on a supercomputer in California to obtain the results. Dunn called the effort the most computationally intensive phylogenetic analysis to date.

Other scientists who contributed to the research are Andreas Hejnol, Mark Martindale and Elaine Seaver, University of Hawaii; Matthias Obst, Goteborg University, Sweden; Alexandros Stamatakis and Michael Ott, Technical University of Munich, Germany; Greg Rouse, Scripps Institution of Oceanography; Gregory Edgecombe, Natural History Museum, London; Pedro Martinez and Jaume Baguna, Universitat de Barcelona, Spain; Xavier Bailly, Station Biologique de Roscoff, France; Ulf Jondelius, Swedish Museum of Natural History; Matthias Wiens and Werner Muller, Johannes-Gutenberg-University Mainz, Germany; Ward Wheeler, American Museum of Natural History; and Gonzalo Giribet, Harvard University.

The research was funded by the National Science Foundation and the San Diego Supercomputing Center.

Richard Lewis | EurekAlert!
Further information:
http://www.Brown.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>