Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yale scientists make 2 giant steps in advancement of quantum computing

27.09.2007
Two major steps toward putting quantum computers into real practice — sending a photon signal on demand from a qubit onto wires and transmitting the signal to a second, distant qubit — have been brought about by a team of scientists at Yale.

The accomplishments are reported in sequential issues of Nature on September 20 and September 27, on which it is highlighted as the cover along with complementary work from a group at the National Institute of Standards and Technologies.

Over the past several years, the research team of Professors Robert Schoelkopf in applied physics and Steven Girvin in physics has explored the use of solid-state devices resembling microchips as the basic building blocks in the design of a quantum computer. Now, for the first time, they report that superconducting qubits, or artificial atoms, have been able to communicate information not only to their nearest neighbor, but also to a distant qubit on the chip.

This research now moves quantum computing from “having information” to “communicating information.” In the past information had only been transferred directly from qubit to qubit in a superconducting system. Schoelkopf and Girvin’s team has engineered a superconducting communication ‘bus’ to store and transfer information between distant quantum bits, or qubits, on a chip. This work, according to Schoelkopf, is the first step to making the fundamentals of quantum computing useful.

The first breakthrough reported is the ability to produce on demand — and control — single, discrete microwave photons as the carriers of encoded quantum information. While microwave energy is used in cell phones and ovens, their sources do not produce just one photon. This new system creates a certainty of producing individual photons.

“It is not very difficult to generate signals with one photon on average, but, it is quite difficult to generate exactly one photon each time. To encode quantum information on photons, you want there to be exactly one,” according to postdoctoral associates Andrew Houck and David Schuster who are lead co-authors on the first paper.

“We are reporting the first such source for producing discrete microwave photons, and the first source to generate and guide photons entirely within an electrical circuit,” said Schoelkopf.

In order to successfully perform these experiments, the researchers had to control electrical signals corresponding to one single photon. In comparison, a cell phone emits about 1023 (100,000,000,000,000,000,000,000) photons per second. Further, the extremely low energy of microwave photons mandates the use of highly sensitive detectors and experiment temperatures just above absolute zero.

“In this work we demonstrate only the first half of quantum communication on a chip — quantum information efficiently transferred from a stationary quantum bit to a photon or ‘flying qubit,’” says Schoelkopf. “However, for on-chip quantum communication to become a reality, we need to be able to transfer information from the photon back to a qubit.”

This is exactly what the researchers go on to report in the second breakthrough. Postdoctoral associate Johannes Majer and graduate student Jerry Chow, lead co-authors of the second paper, added a second qubit and used the photon to transfer a quantum state from one qubit to another. This was possible because the microwave photon could be guided on wires — similarly to the way fiber optics can guide visible light — and carried directly to the target qubit. “A novel feature of this experiment is that the photon used is only virtual,” said Majer and Chow, “winking into existence for only the briefest instant before disappearing.”

To allow the crucial communication between the many elements of a conventional computer, engineers wire them all together to form a data “bus,” which is a key element of any computing scheme. Together the new Yale research constitutes the first demonstration of a “quantum bus” for a solid-state electronic system. This approach can in principle be extended to multiple qubits, and to connecting the parts of a future, more complex quantum computer.

However, Schoelkopf likened the current stage of development of quantum computing to conventional computing in the 1950’s, when individual transistors were first being built. Standard computer microprocessors are now made up of a billion transistors, but first it took decades for physicists and engineers to develop integrated circuits with transistors that could be mass produced.

Janet Rettig Emanuel | EurekAlert!
Further information:
http://www.yale.edu
http://www.eng.yale.edu/rslab/

More articles from Information Technology:

nachricht Football through the eyes of a computer
14.06.2018 | Universität Konstanz

nachricht People recall information better through virtual reality, says new UMD study
14.06.2018 | University of Maryland

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>