Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switching goals

29.08.2007
A computer simulation shows how evolution may have speeded up

Is heading straight for a goal the quickest way there" If the name of the game is evolution, suggests new research at the Weizmann Institute of Science, the pace might speed up if the goals themselves change continuously.

Nadav Kashtan, Elad Noor and Prof. Uri Alon of the Institute’s Molecular Cell Biology and Physics of Complex Systems Departments create computer simulations that mimic natural evolution, allowing them to investigate processes that, in nature, take place over millions of years. In these simulations, a population of digital genomes evolves over time towards a given goal: to maximize fitness under certain conditions. Like living organisms, genomes that are better adapted to their environment may survive to the next generation or reproduce more prolifically. But such computer simulations, though sophisticated, don’t yet have all the answers. Achieving even simple goals may take thousands of generations, raising the question of whether the three-or-so billion years since life first appeared on the planet is long enough to evolve the diversity and complexity that exist today,

Evolution takes place under changing environmental conditions, forcing organisms to continually readapt. Intuitively, this would slow things down even further, as successive generations must switch tack again and again in the struggle to survive. But when Kashtan, Noor and Alon created a simulation in which the goals changed repeatedly, they found that its evolution actually speeded up. They even found that the more complex the goal – i.e., the more generations needed reach it under fixed conditions – the faster evolution accelerated in response to changes in that goal.

Computerized evolution ran fastest, the scientists found, when the changes followed a pattern they believe may be pervasive in nature. In previous research, Kashtan and Alon had shown that evolution may often be modular – involving adjustments to standard parts, rather than wholesale remodeling. They theorized that the forces acting on evolution may be modular as well, and for each goal, they defined subgoals that could each change in relation to the others. 'In an organism, for example, you might classify these subgoals as the need to eat, the need to keep from being eaten, and the need to reproduce. The same subgoals must be fulfilled in each new environment, but there are differences in nuance and combination,' says Kashtan. 'We saw a large speedup, for instance, when we repeatedly exchanged an 'OR' for an 'AND' in the computer code defining our goals, thus changing the relationship between subgoals.'

Although the main aim of this research, which appeared recently in the Proceedings of the National Academy of Sciences (PNAS), was to shed light on theoretical questions of evolution, it may have some practical implications, particularly in engineering fields in which evolutionary tools are commonly used for systems design; and in computer science, by providing a possible way to accelerate optimization algorithms.

Yivsam Azgad | EurekAlert!
Further information:
http://www.weizmann.ac.il

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>