Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


ECS develops new technology to facilitate System-on-Chip

A new simulator developed by the University of Southampton, which has been downloaded over 100 times over the last couple of months, will pave the way for smaller, more competitive handheld computing devices.

Professor Bashir Al-Hashimi and his team at the University’s School of Electronics & Computer Science (ECS) have developed NIRGAM (Network-on-Chip Interconnect RoutinG and Applications Modelling), a simulator which will make it possible to easily connect up the various cores which exist within a System-on-Chip (SoC).

According to Professor Al-Hashimi, as the demand for more functionality from hand-held devices increases, the current interconnection techniques will not be adequate to support more powerful devices, due to limited bandwidth scalability.

“The microelectronics industry predicts that in 2008 SoCs will contain over 50 processing and memory blocks and this will increase to 100 cores in 2012,” he said.

This led to Professor Al-Hashimi and Professor Alex Yakovlev at the University of Newcastle securing funding from the Engineering and Physical Sciences Research Council (EPSRC) in 2005 to develop the next generation of interconnection technology for multiprocessor SoCs, from which NIRGAM has been developed.

‘The availability of such a simulator will be welcomed by the SoC and Network-on- Chip (NoC) research communities since it allows researchers to plug-in and experiment with different applications and routing algorithms using different traffic and topologies,’ said Professor Al-Hashimi. ‘The availability of such a simulator is vital for researchers since it will enable them to evaluate quickly their routing algorithms and applications on a NoC platform, and without the need to develop long programs.’

Helene Murphy | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>