Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evacuation software finds best way to route millions of vehicles

14.06.2007
Yi-Chang Chiu wants to move people efficiently — lots of people, millions of people — in response to a terrorist attack or natural disaster.

Suppose, for instance, that a disaster occurred in Southern California and suddenly 700,000 vehicles headed for the Arizona border" How would transportation officials generate the best traffic management strategy to cope with the traffic"

One very good option would be to use the computer simulation package that Chiu, an assistant professor in The University of Arizona Civil Engineering Department, has been developing since 1995, when he was a graduate student at the University of Texas in Austin.

"Solving large-scale evacuation problems is overwhelming," Chiu said. "No one can just sit down with a map and draw lines and figure out the best answer to problems like these."

No single plan or even series of plans is sufficient, he added. "We're not focusing on a script because a disaster scenario is very unpredictable. You can't have one plan that fits all situations, and you can't evaluate hundreds of scenarios or your 'plan' will end up looking like a phone book."

Instead, Chiu and his colleagues have focused on developing software that can react to a situation in real time, adjusting as conditions on the ground change.

Planning on the Fly "If we're reacting to a hurricane, we have 72 hours to plan," he said. "But what if an unforeseen disaster occurs" We need to make a decision in 15 minutes."

The software package depends on detailed traffic census data that is collected by state and city transportation departments in conjunction with real-time traffic surveillance data. "The cars aren't just randomly placed on the streets in our simulations," he said. "We know where every car has come from, where it's at and where it's headed, and vehicle movements follow rigorous traffic flow theories. So the simulation is very realistic. It's not just a random process."

It's also very complicated. The software considers decisions each driver might make on factors such as when to leave, which route to take, if they listen to radio reports and change their route, if they are slowed by congestion and change routes, or if they react to freeway message boards that carry routing advisories.

Responding to Airborne Hazards The model also can be combined with an air-plume dispersion model to predict how traffic will respond to airborne hazardous material.

"We have a scenario that says a refinery caught fire and every 30 minutes the wind plume is progressing according to the wind speed and temperature," Chiu said. "So we can calculate the health risk. In the case of an extremely toxic substance, we can also calculate the number of casualties and where they will occur."

The model isn't finished when the disaster ends. It also has post-disaster applications. For instance, Chiu and his colleagues analyzed a high-rise, multi-level interchange in El Paso, Texas where I-10 and US 54 meet.

If that interchange were completely destroyed, what would be the immediate and long-term impact to the city and what would be the best scenario for recovery"

"If you have only limited funds or time, which project will do the most good for recovery"" Chiu asked. "Do you open I-10 first or US 54" The model allows us to make those kinds of after-disaster recovery decisions based on the detailed, day-to-day traffic-flow data that has been collected by the City of El Paso and the projected traffic patterns from the model."

Value Pricing on Toll Roads Chiu and his colleagues also have used the software to model what's called "value pricing" on toll roads. The idea is to use a sliding toll scale to manage congestion. When traffic increases, the toll notches up incrementally to a maximum amount. This information is broadcast to drivers in various ways, with the hope that they will choose a different route, use public transit or delay their trip.

"The real research focus here is to develop a fair method for calculating tolls," Chiu said. "It can't be arbitrary or people won't accept it. You need to do very careful planning."

The traffic software, which Chiu and others began building line-of-code by line-of-code back in 1995, has undergone several software engineering cycles since then and now is a mature product that will soon be ready for state transportation and emergency medical agencies.

The next generation of the software, which is now under development, is called MALTA (Multi-Resolution Assignment and Loading of Traffic Activities). It is being designed to run even faster, to handle networks with much larger sizes, and to respond minute-by-minute to real-time emergencies. Instead of running on a single computer, it employs parallel processing, in which several computers work together on the problem. The National Science Foundation and Arizona Department of Transportation are funding the development and field testing of MALTA.

Johnny Cruz | EurekAlert!
Further information:
http://www.arizona.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>