Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NASA satellites watch as China constructs giant dam

14.06.2007
Some call it the eighth wonder of world. Others say it's the next Great Wall of China. Upon completion in 2009, the Three Gorges Dam along China’s Yangtze River will be the world's largest hydroelectric power generator and one of the few man-made structures so enormous that it's actually visible to the naked eye from space.

NASA's Landsat satellites have provided detailed, vivid views of the dam since construction began in 1994. The Yangtze River is the third largest river in the world, stretching more than 3,900 miles across China before reaching its mouth near Shanghai. Historically, the river has been prone to massive flooding, overflowing its banks about once every ten years.

During the 20th century alone, Chinese authorities estimate that some 300,000 people were killed from Yangtze River floods. The dam is designed to greatly improve flood control on the river and protect the 15 million people and 3.7 million acres of farmland in the lower Yangtze flood plains. Observations from the NASA-built Landsat satellites provide an overview of the dam's construction. The first image shows the region prior to start of the project.

By 2000, construction along each riverbank was underway, but sediment-filled water still flowed through a narrow channel near the river’s south bank. The 2004 images show limited development of the main wall and the partial filling of the reservoir, including numerous side canyons. By mid-2006, construction of the main wall was completed and a reservoir more than 2 miles (3 kilometers) across had filled just upstream of the dam.

The sheer size and power of the dam is mind-boggling. At a construction cost of at least $625 billion, it is roughly 1.4 miles (2.3 kilometers) long and 607 feet tall, five times larger than Hoover Dam on the Arizona-Nevada border.

Engineered to store more than 5 trillion gallons of water, the Three Gorges Dam is designed to produce more than 18,000 megawatts of electricity when all 26 turbines become operational in 2009—twenty times the power of Hoover Dam. The reservoir will also allow 10,000-ton freighters to enter the nation's interior, opening a region burgeoning with agricultural and manufactured products, increasing commercial shipping access to China's cities.

Despite these anticipated advantages, construction of the dam has not been free of controversy. While the reservoir's flood storage capacity will lessen the frequency of major downstream floods in the future, the dam's reservoir will eventually be flooded to 574 feet (175 meters) above sea level, submerging about 244 square miles (393 square kilometers) of land - including the three gorges that give the dam its name: the Qutang, Wu Xia, and Xiling. As a result, more than 1 million people have been or will be relocated. Dozens of architectural and cultural sites will also disappear under the reservoir.

There are also environmental concerns. The dam is designed to weather floods of a once-in-a-century severity, but some researchers say a greater concern is earthquake activity in the area, which might result in a breach of the dam.

In April 2007, China's Xinhua news agency reported that the dam's reservoir is polluted by pesticides, fertilizers and sewage. According to a joint study by the Chinese Academy of Sciences, the World Wildlife Fund and the Yangtze River Water Resources Commission, nearly 30 percent of the Yangtze's major tributaries were seriously polluted.

While Landsat is a premier research tool for observing changes on the Earth's surface, other NASA satellites are also helpful in determining how changing land cover and use may influence climate and the environment. Just as transforming forested lands into cities can change the local climate, scientists have found evidence that Three Gorges Dam and its enormous reservoir might have a similar effect.

In a recent study, researchers used computer models and data from NASA's Tropical Rainfall Measuring Mission satellite to estimate how the dam's construction impacted area rainfall. Information from NASA's Terra and Aqua satellites also revealed the dam's effect on land surface temperatures.

"The satellite data and computer modeling clearly indicate that the land use change associated with the dam's construction has increased precipitation in the region between the Daba and Qinling mountains," said lead author Liguang Wu of NASA Goddard Space Flight Center, Greenbelt, Md., and the University of Maryland - Baltimore County. The land changes also reduced rainfall in the region immediately surrounding Three Gorges Dam after the dam's water level abruptly rose in June 2003.

The researchers were surprised to see that the dam affected rainfall over such a large area - a 62-square-mile region - rather than just 6 miles projected in previous studies.

Land surface temperature changes were also found to occur in the area where more rain fell. In the daytime, temperatures between the Daba and the Qinling mountains decreased by an average of 1.2 degrees Fahrenheit (0.67 degrees Celsius). Where there was more rainfall, there were more clouds, which reduced the amount of sunlight and heat that reached the land surface, creating cooler daytime temperatures.

The study suggests that the cause of these temperature changes was the expansion of the width of the Yangtze River and the formation of the dam's reservoir. After construction, a 401-square-mile reservoir formed in the mountainous area. Before the dam, the Yangtze River was only one-third of a mile in width. The larger mass of water created a "lake effect," causing cooler temperatures and increased rainfall between the Daba and Qinling mountains, but less rainfall in the immediate vicinity of the reservoir.

When the dam becomes fully operational in 2009 and the reservoir reaches its peak size, scientists predict these regional temperature and precipitation changes may increase even more. The 2006 study was published in the American Geophysical Union's Geophysical Research Letters.

Lynn Chandler | EurekAlert!
Further information:
http://www.nasa.gov/centers/goddard/news/topstory/2007/dam_construct.html

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>