Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA takes steps toward quantum communications

13.06.2007
A team of European scientists has proved within an ESA study that the weird quantum effect called entanglement remains intact over a distance of 144 kilometres.

The experiment allows ESA to take a step closer to exploiting entanglement as a way of communicating with satellites with total security.

Quantum entanglement is one of the many non-intuitive features of quantum mechanics. If two photons of light are allowed to properly interact with one another, they can become entangled. One can even directly create pairs of entangled photons using a non-linear process called SPDC (Spontaneous Parametric Down Conversion).

Those two entangled photons can then be separated but as soon as one of them interacts with a third particle, the other photon of the pair will change its quantum state instantaneously. This happens according to the random outcome of the interaction, even though this photon never did interact with a third particle.

Such behaviour has the potential to allow messages to be swapped with complete confidence. This is because, if an eavesdropper listens into the message, the act of detecting the photons will change the entangled partner. These changes would be obvious to the legitimate receiving station and the presence of the eavesdropper would be instantly detected.

A quantum communications system would be a valuable way to transmit banking information, or military communications, or even to distribute feature films without the fear of piracy.

Even though entanglement has been known about for decades, no one has known whether the entanglement decays over long distance. For example, would a beam of entangled photons remain entangled if it passed through the atmosphere of the Earth? On their journey, the photons could interact with atoms and molecules in the air. Would this destroy the entanglement?

If so, entanglement would be useless as a means of communicating with satellites in orbit, because all signals would have to pass through the Earth's atmosphere. Now, an Austrian-German led team have proved conclusively that photons remain entangled over a distance of 144 kilometres through the atmosphere. That means that entangled signal will survive the journey from the surface of the Earth into space, and vice versa.

In September 2005, the European team aimed ESA's one-metre telescope on the Canary Island of Tenerife toward the Roque de los Muchachos Observatory on the neighbouring island of La Palma, 144 kilometres away. On La Palma, a specially built quantum optical terminal generated entangled photon pairs, using the SPDC process, and then sent one photon towards Tenerife, whilst keeping the other for comparison.

Upon comparing the results from Tenerife with those from La Palma, it was obvious that the photons had remained entangled. "We were sending the single-photon beam on a 144 kilometres path through the atmosphere, so this horizontal quantum link can be considered a 'worst case scenario' for a space to ground link," says Josep Perdigues, ESA's Study Manager.

Additional tests with a quantum communication source that generated faint laser pulses instead of entangled photon pairs were performed in 2006. Faint laser pulse sources emulate single photon sources by attenuating the optical power of a standard laser down to single photon regime. Attenuated lasers are technologically much simpler than entangled photon sources or 'true' single photon sources.

The price you have to pay is the unwanted opportunity for information leakage, due to the non-zero probability of having more than one photon per pulse. In practice, this limits the maximum link distance for exchanging securely a key. By implementing a decoy-state protocol in the experiments using a faint laser pulse source, the maximum link distance (yet secure against an eavesdropper’s action) was extended to values representative of a space to ground experiment.

The team are now studying ways to take the experiment into space. "Being in space will mean that we can test entanglement over lines of sight longer than 1 000 kilometres, unfeasible on Earth, thereby extending the validity of Quantum Physics theory to macroscopic scales," says Perdigues. One option is to use the external pallet on the Columbus module of the International Space Station. Another would be to put the quantum optical terminal on a dedicated satellite of its own. The quantum optical terminal is about 100 kg in mass and fits into a one-cubic-metre box.

Andres Galvez | alfa
Further information:
http://www.esa.int/SPECIALS/GSP/SEMXM7Q08ZE_0.html

More articles from Information Technology:

nachricht Cloud technology: Dynamic certificates make cloud service providers more secure
15.01.2018 | Technische Universität München

nachricht New discovery could improve brain-like memory and computing
10.01.2018 | University of Minnesota

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>