Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESA takes steps toward quantum communications

13.06.2007
A team of European scientists has proved within an ESA study that the weird quantum effect called entanglement remains intact over a distance of 144 kilometres.

The experiment allows ESA to take a step closer to exploiting entanglement as a way of communicating with satellites with total security.

Quantum entanglement is one of the many non-intuitive features of quantum mechanics. If two photons of light are allowed to properly interact with one another, they can become entangled. One can even directly create pairs of entangled photons using a non-linear process called SPDC (Spontaneous Parametric Down Conversion).

Those two entangled photons can then be separated but as soon as one of them interacts with a third particle, the other photon of the pair will change its quantum state instantaneously. This happens according to the random outcome of the interaction, even though this photon never did interact with a third particle.

Such behaviour has the potential to allow messages to be swapped with complete confidence. This is because, if an eavesdropper listens into the message, the act of detecting the photons will change the entangled partner. These changes would be obvious to the legitimate receiving station and the presence of the eavesdropper would be instantly detected.

A quantum communications system would be a valuable way to transmit banking information, or military communications, or even to distribute feature films without the fear of piracy.

Even though entanglement has been known about for decades, no one has known whether the entanglement decays over long distance. For example, would a beam of entangled photons remain entangled if it passed through the atmosphere of the Earth? On their journey, the photons could interact with atoms and molecules in the air. Would this destroy the entanglement?

If so, entanglement would be useless as a means of communicating with satellites in orbit, because all signals would have to pass through the Earth's atmosphere. Now, an Austrian-German led team have proved conclusively that photons remain entangled over a distance of 144 kilometres through the atmosphere. That means that entangled signal will survive the journey from the surface of the Earth into space, and vice versa.

In September 2005, the European team aimed ESA's one-metre telescope on the Canary Island of Tenerife toward the Roque de los Muchachos Observatory on the neighbouring island of La Palma, 144 kilometres away. On La Palma, a specially built quantum optical terminal generated entangled photon pairs, using the SPDC process, and then sent one photon towards Tenerife, whilst keeping the other for comparison.

Upon comparing the results from Tenerife with those from La Palma, it was obvious that the photons had remained entangled. "We were sending the single-photon beam on a 144 kilometres path through the atmosphere, so this horizontal quantum link can be considered a 'worst case scenario' for a space to ground link," says Josep Perdigues, ESA's Study Manager.

Additional tests with a quantum communication source that generated faint laser pulses instead of entangled photon pairs were performed in 2006. Faint laser pulse sources emulate single photon sources by attenuating the optical power of a standard laser down to single photon regime. Attenuated lasers are technologically much simpler than entangled photon sources or 'true' single photon sources.

The price you have to pay is the unwanted opportunity for information leakage, due to the non-zero probability of having more than one photon per pulse. In practice, this limits the maximum link distance for exchanging securely a key. By implementing a decoy-state protocol in the experiments using a faint laser pulse source, the maximum link distance (yet secure against an eavesdropper’s action) was extended to values representative of a space to ground experiment.

The team are now studying ways to take the experiment into space. "Being in space will mean that we can test entanglement over lines of sight longer than 1 000 kilometres, unfeasible on Earth, thereby extending the validity of Quantum Physics theory to macroscopic scales," says Perdigues. One option is to use the external pallet on the Columbus module of the International Space Station. Another would be to put the quantum optical terminal on a dedicated satellite of its own. The quantum optical terminal is about 100 kg in mass and fits into a one-cubic-metre box.

Andres Galvez | alfa
Further information:
http://www.esa.int/SPECIALS/GSP/SEMXM7Q08ZE_0.html

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>