Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better photos from your mobile

22.05.2007
Every year, between 600 and 800 million mobile telephones are sold all over the world. However, unlike ordinary cameras, mobile phone cameras are not equipped with autofocus.

Because of their small aperture, they already offer reasonable sharpness, but poor light can make it difficult to take pictures indoors, and the results are often out of focus. In the future, some mobile telephones will be equipped with two cameras, and we can also see a trend in the direction of functions such as autofocus and zoom becoming more and more common.

The Horton company Ignis Display saw interesting possibilities in this area, and it contacted SINTEF, which had some ideas about how this functionality could be transferred from ordinary camera to mobile telephones. A project is already under way, and as well as being able to focus extremely rapidly, the new lens will also be inexpensive and be of good optical quality.

“Eye-blink”

The idea is based in principle on the way that the eye functions with its own autofocus mechanism. In human beings, as in all mammals, the lens consist of a soft transparent substance. Round the lens is a muscle that controls the thickness of the lens according to the distance on which we wish to focus. For objects close to us, the muscle relaxes, so that the lens becomes thicker in the middle, while it contracts and the lens becomes thinner when we focus on objects at greater distances. Ignis Display’s new lens is also made of soft material, a low-density polymer that can be easily formed and that can change its shape almost like a muscle. The polymer is installed on a silicon circuit together with piezoelectric elements which convert electrical signals to mechanical forces and give the polymer whatever lens shape is required.

The scientists started by building a demonstration version of the lens with nuts and bolts and wires in order to demonstrate that the principle would work.

“Our first prototype will soon be ready for testing, and we will continue to improve and miniaturise it. This has been an interdisciplinary project in which our ceramics scientists have developed a robust and stable piezoelectric element, while the plastics scientists have been working on the polymer,” says senior scientist Dag T. Wang of SINTEF ICT.

Production

The next stage will be that scientists at Ignis Display and SINTEF – in collaboration with other partners – will continue the process of miniaturisation and the development of a suitable manufacturing technology.

The technology employed in making the lenses involves producing not just one lens or chip, but between one hundred and a thousand items at a time, depending on the size of the silicon wafer used. This approach is essential if Ignis Display is to compete on the international market with a reasonably priced product.

“We deposit material on silicon wafers that have space for a large number of chips. Then we place a mask over the wafer, create the pattern of the circuit on it by photolithography and etch it. We produce large numbers of identical circuits every time. What makes our production of micro-sized structures possible is the fact that we have been working on ceramics and piezoelectric materials in SINTEF for many years,” says Wang.

The people at Ignis Display bring together several wafers and install the polymer, before integrating the tiny lens module with the necessary electronics and other lens elements.

Growing market

Today, virtually all mobile telephones have at least one camera. Many people in the industry believe that it is only a matter of time until telephones will be equipped with two; one on each side, for conferences and presentations via mobile telephone. Given the steady increase in the number of mobile telephones sold, and a doubling of the number of cameras in each unit, there is obviously a lot of money to be made in this field.

Ignis Display ‘s technology has aroused a great deal of interest both in Norway and abroad. Although the company has several competitors, Ignis Display believe that it is likely that millions of mobile cameras will be taking photographs with its lenses within a few years.

By Jan Helstad/Åse Dragland.

Aase Dragland | alfa
Further information:
http://www.sintef.no

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>