Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

'Tunable' network features coordinated frequency combs

14.05.2007
A super stable fiber-optic network that can be tuned across a range of visible and near-infrared frequencies while synchronizing the oscillations of light waves from different sources has been demonstrated at the National Institute of Standards and Technology (NIST).

The flexible network design can simplify accurate comparisons of the latest atomic clocks operating at different frequencies and in different locations. The research also may have applications in remote sensing and secure communications.

Described in the May issue of Nature Photonics,* the prototype NIST network demonstrates the first remote synchronization of light waves from two "frequency combs"—advanced laboratory tools for precisely measuring frequencies of light. The two combs have fine "teeth" marking precise frequencies in different but overlapping bands. If light waves at identical frequencies are merged, they can either overlap exactly or be "out of phase" (that is, their oscillations are at the same frequency but start at different times). Light waves at different frequencies never overlap exactly but, with great effort, can be made to overlap out of phase in the same patterns in repeated experiments. The NIST network is designed to do exactly that, thus reducing channel "noise" that would result from mismatches. The stability of the lasers and low "jitter" of the synchronized waves means the original signal character is always preserved.

The network also showcases record performance in a frequency comb produced from an erbium fiber laser, an alternative to the original frequency comb generated from a titanium-sapphire crystal, also developed at NIST. Scientists recently reduced the noise in the fiber-based comb enough to improve its stability 30-fold, achieving performance comparable to the state-of-the-art Ti:Sapphire frequency comb used as the second comb in the new NIST network. Fiber-based frequency combs have the potential to be more compact and less expensive; they also measure the lower, near-infrared frequencies of light that are used in telecommunications.

The prototype network spans three-quarters of a kilometer and connects three different laboratories on the NIST Boulder, Colo., campus. The designers say it could be extended to 50 km or more without any loss in performance. To showcase the capability of the two frequency combs (which operate on different principles) to precisely compare vastly disparate optical frequencies across great distances, both combs are stabilized by the same source of 1126 nm laser light, so that each tooth of each comb is locked to a single frequency. In addition, laser light at 1535 nm laser, stabilized by one comb, is compared to 1535 nm light generated from the second comb, and the stability of the beat frequency (representing the difference between them) is analyzed to evaluate network performance.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov
http://www.nist.gov/public_affairs/newsfromnist_frequency_combs.htm

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>