Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


'Tunable' network features coordinated frequency combs

A super stable fiber-optic network that can be tuned across a range of visible and near-infrared frequencies while synchronizing the oscillations of light waves from different sources has been demonstrated at the National Institute of Standards and Technology (NIST).

The flexible network design can simplify accurate comparisons of the latest atomic clocks operating at different frequencies and in different locations. The research also may have applications in remote sensing and secure communications.

Described in the May issue of Nature Photonics,* the prototype NIST network demonstrates the first remote synchronization of light waves from two "frequency combs"—advanced laboratory tools for precisely measuring frequencies of light. The two combs have fine "teeth" marking precise frequencies in different but overlapping bands. If light waves at identical frequencies are merged, they can either overlap exactly or be "out of phase" (that is, their oscillations are at the same frequency but start at different times). Light waves at different frequencies never overlap exactly but, with great effort, can be made to overlap out of phase in the same patterns in repeated experiments. The NIST network is designed to do exactly that, thus reducing channel "noise" that would result from mismatches. The stability of the lasers and low "jitter" of the synchronized waves means the original signal character is always preserved.

The network also showcases record performance in a frequency comb produced from an erbium fiber laser, an alternative to the original frequency comb generated from a titanium-sapphire crystal, also developed at NIST. Scientists recently reduced the noise in the fiber-based comb enough to improve its stability 30-fold, achieving performance comparable to the state-of-the-art Ti:Sapphire frequency comb used as the second comb in the new NIST network. Fiber-based frequency combs have the potential to be more compact and less expensive; they also measure the lower, near-infrared frequencies of light that are used in telecommunications.

The prototype network spans three-quarters of a kilometer and connects three different laboratories on the NIST Boulder, Colo., campus. The designers say it could be extended to 50 km or more without any loss in performance. To showcase the capability of the two frequency combs (which operate on different principles) to precisely compare vastly disparate optical frequencies across great distances, both combs are stabilized by the same source of 1126 nm laser light, so that each tooth of each comb is locked to a single frequency. In addition, laser light at 1535 nm laser, stabilized by one comb, is compared to 1535 nm light generated from the second comb, and the stability of the beat frequency (representing the difference between them) is analyzed to evaluate network performance.

Laura Ost | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>