Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Multisensor Detection System Fights Terrorism

04.04.2007
The terrorist attacks, carried out on September 11th 2001 in the USA and later on the London Underground, in Moscow and Madrid, have made the whole world see the real threat of international terrorism in a different light. Researchers from many countries have concentrated their efforts on the development of methods and special equipment with which it will be possible to detect explosive objects in advance.

Such devices include various sensor and detection systems playing a leading role. At present, modern airports implement luggage control that is usually performed with stationary X-ray devices with 2D project imaging of objects, which do not provide a full picture about material information or in-depth resolution. For comparison, the control of people at the same airports is performed with metal stationary (with sound signals) or hand-operated detectors. In a number of cases physical body control of a person is performed but it is considered unpleasant from both controllers’ and passengers’ point of view.

However, all these methods, with the exception of physical body control, do not provide a comprehensive body of data on dangerous non-metal objects, plastic and liquid explosive materials and substances, etc. In the majority of transportation centres personnel monitoring is usually limited to the application of stationary metal detectors.

Georgian scientists are actively involved in the development of a new multisensor detection system for three-dimensional (3D) imaging and signal processing that will help to receive information not only on the form and size of an object but also on the material that this object is made of.

“One of today’s existing developments, created in the field of microwave detection,” explains Nina Pavlovna Khuchua, Head of Laboratory at Tbilisi State University, “is a system developed in the USA and designed for three-dimensional imaging of hidden weapons, detected with the help of a signal on milimeter waves. However, this system has a number of major shortcomings. The most essential among them is that it is stationary, in other words, this system cannot be moved from place to place. Moreover, an operator determines, without additional checking, whether the discovered object is an explosive or not.”

At the heart of the developed multisensor system lies a combination of two methods that use various physical principals: microwave sensing and X-ray scanning. This combination will give additional information (in addition to size and form of hidden objects, the characteristics of material and distance from sensor to object), including enhanced spatial resolution. The scientists assume the implementation of a new approach to microwave sensing with the application of a quadrature sensor concept that will help to determine object parameters more precisely and exclude all key “parasitic” effects that impair measurement accuracy. Multiple X-ray line detectors with different energy thresholds will be used for X-ray scanning. The application of 3D inversion algorithms and algorithms of data synthesis facilitate the receipt of three-dimensional images of an object from both of these detectors. The detectors will be made on the basis of a semiconductor GaAs and related compounds.

Project Manager Nina Pavlovna Khuchua believes the multisensor has the following advantages for security objectives: first of all, to identify dangerous metal and non-metal objects and materials in both baggage and attached on individual passengers, as a result of which the researchers will be able to avoid physical body control; secondly, to quickly monitor people with a portable sensor system, helping to determine dangerous liquid materials in concealed cavities, such as footwear.

It should be emphasized that from the point of view of people’s X-ray radiation at present low-power radiation technologies are being developed which are not dangerous for health. Of course, the duration of the irradiation process is also of the utmost importance. It is assumed that the duration of monitoring will be no more than 1-2 seconds.

Therefore, under the necessary financing, the project will result in a new improved tool for monitoring people and baggage to detect concealed weapons or explosives. As a result terrorists’ chances to carry out their brutal plans will considerably reduce.

Olga Radkevich | alfa
Further information:
http://tech-db.istc.ru/ISTC/sc.nsf/events/novel-multisensor-detection-system-fights-terrorism

More articles from Information Technology:

nachricht Safe glide at total engine failure with ELA-inside
27.02.2017 | FernUniversität in Hagen

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>