Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fifty years on from a computer revolution

27.03.2007
The press dubbed them “brain machines”. And when computers were delivered to six British universities fifty years ago, they heralded the dawn of a technological revolution.

Computing was very much in its infancy. Manchester University made the first, Cambridge built one too – but a huge Government investment in 1957 kick-started academic computing, enabling state-of the-art factory-built machines to be installed at Leeds, Southampton, Newcastle, Oxford and London and Glasgow.

It was a huge risk, as Professor Roger Boyle, modern-day head of computing at the University of Leeds, explained: “They had no way of knowing if this was a good idea or not.”

The Leeds machine, Lucifer, cost £50,000 and was as far removed from the modern day laptop as could be imagined. It was installed in a disused Methodist Chapel on the edge of campus, where a new concrete floor was laid to take its weight and minimise vibration. “It was enormous,” Boyle explained. “They had to winch many of the components through the roof.”

“There were no transistors – it was all valves and glowing lights – and came with armies of personnel, who had to carry out a daily maintenance programme.” Sandy Douglas, who had worked on the Cambridge computer, was recruited to head up the team.

Programming was done by paper tape. “They would feed the tape into the machine, wait while it thought about it, often for hours – and then the answer would be spat out on more paper tape.”

And though by modern standards its memory was tiny and its processing speed slow, Lucifer enabled Leeds researchers to make complex calculations far more quickly than was possible using pencils, paper and slide rules. “It could do 12-figure multiplications in a fraction of a second,” said Boyle. “This made it a really valuable tool for physicists and mathematicians. Our machine was also used by chemists who needed its power for their work in crystallography.”

Their time on it was very precious. “And if you were a user you had to understand exactly how it worked, and that was a profound technical skill. In the 1950s, if you were a computer user, you were among the University elite.”

Just as now, technology moved on apace. By 1960 Lucifer was given a major upgrade, and four years later it was replaced. Sadly, few of the original components survive, though an identical model is on display at the Science Museum in London.

And though it was soon obsolete, Boyle says that original investment led directly to an exponential growth in the use of computers in British Universities, and paved the way for 50 years of technological growth. “By the 1960s Leeds was offering PhDs and Masters degrees in computing and in the 1970s we were among the first universities to offer a single honours degree in the subject.”

At the time, our universities led the way in developing the skills for the burgeoning new industry. “Britain was right up there,” said Boyle, adding that it wasn’t until the late 1960s that the emergence of the American giants began to put Britain in the shade. “And even though our technical lead faltered, we are still ahead in some areas of theory and science.”

He admits that computer courses have suffered something of an image problem in recent years: “Computing is no longer seen as glamorous. 20 years ago it was rocket science, but now computers are just so much part of everyday life and it isn’t seen as such an exciting subject to study.

“That’s a shame, because the demand for our research and our graduates remains very high.” And Leeds remains a centre of excellence for computer science, artificial intelligence and informatics.

The University of Leeds is staging a major event to mark its computing jubilee on Friday March 30, when former staff and students, including some from the department’s pioneering early days, are returning to the campus. The year’s events will also include the award of an honorary doctorate of engineering to Emeritus Professor Tony Wren in recognition of his world-leading work on transport scheduling – work which began on Leeds’s original “brain machine”.

For more information

Professor Roger Boyle is available for interview. Contact via Simon Jenkins, University of Leeds press office, on +44 113 3435764, 07791 333229, email s.jenkins@leeds.ac.uk

Full details of the Leeds computing jubilee event can be found at www.comp.leeds.ac.uk/jubilee/

Simon Jenkins | alfa
Further information:
http://www.comp.leeds.ac.uk/jubilee/
http://www.leeds.ac.uk

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>