Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fifty years on from a computer revolution

27.03.2007
The press dubbed them “brain machines”. And when computers were delivered to six British universities fifty years ago, they heralded the dawn of a technological revolution.

Computing was very much in its infancy. Manchester University made the first, Cambridge built one too – but a huge Government investment in 1957 kick-started academic computing, enabling state-of the-art factory-built machines to be installed at Leeds, Southampton, Newcastle, Oxford and London and Glasgow.

It was a huge risk, as Professor Roger Boyle, modern-day head of computing at the University of Leeds, explained: “They had no way of knowing if this was a good idea or not.”

The Leeds machine, Lucifer, cost £50,000 and was as far removed from the modern day laptop as could be imagined. It was installed in a disused Methodist Chapel on the edge of campus, where a new concrete floor was laid to take its weight and minimise vibration. “It was enormous,” Boyle explained. “They had to winch many of the components through the roof.”

“There were no transistors – it was all valves and glowing lights – and came with armies of personnel, who had to carry out a daily maintenance programme.” Sandy Douglas, who had worked on the Cambridge computer, was recruited to head up the team.

Programming was done by paper tape. “They would feed the tape into the machine, wait while it thought about it, often for hours – and then the answer would be spat out on more paper tape.”

And though by modern standards its memory was tiny and its processing speed slow, Lucifer enabled Leeds researchers to make complex calculations far more quickly than was possible using pencils, paper and slide rules. “It could do 12-figure multiplications in a fraction of a second,” said Boyle. “This made it a really valuable tool for physicists and mathematicians. Our machine was also used by chemists who needed its power for their work in crystallography.”

Their time on it was very precious. “And if you were a user you had to understand exactly how it worked, and that was a profound technical skill. In the 1950s, if you were a computer user, you were among the University elite.”

Just as now, technology moved on apace. By 1960 Lucifer was given a major upgrade, and four years later it was replaced. Sadly, few of the original components survive, though an identical model is on display at the Science Museum in London.

And though it was soon obsolete, Boyle says that original investment led directly to an exponential growth in the use of computers in British Universities, and paved the way for 50 years of technological growth. “By the 1960s Leeds was offering PhDs and Masters degrees in computing and in the 1970s we were among the first universities to offer a single honours degree in the subject.”

At the time, our universities led the way in developing the skills for the burgeoning new industry. “Britain was right up there,” said Boyle, adding that it wasn’t until the late 1960s that the emergence of the American giants began to put Britain in the shade. “And even though our technical lead faltered, we are still ahead in some areas of theory and science.”

He admits that computer courses have suffered something of an image problem in recent years: “Computing is no longer seen as glamorous. 20 years ago it was rocket science, but now computers are just so much part of everyday life and it isn’t seen as such an exciting subject to study.

“That’s a shame, because the demand for our research and our graduates remains very high.” And Leeds remains a centre of excellence for computer science, artificial intelligence and informatics.

The University of Leeds is staging a major event to mark its computing jubilee on Friday March 30, when former staff and students, including some from the department’s pioneering early days, are returning to the campus. The year’s events will also include the award of an honorary doctorate of engineering to Emeritus Professor Tony Wren in recognition of his world-leading work on transport scheduling – work which began on Leeds’s original “brain machine”.

For more information

Professor Roger Boyle is available for interview. Contact via Simon Jenkins, University of Leeds press office, on +44 113 3435764, 07791 333229, email s.jenkins@leeds.ac.uk

Full details of the Leeds computing jubilee event can be found at www.comp.leeds.ac.uk/jubilee/

Simon Jenkins | alfa
Further information:
http://www.comp.leeds.ac.uk/jubilee/
http://www.leeds.ac.uk

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>