Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vivid on-line videos demonstrate Superbot progress

23.02.2007
USC's lego-like autonomous robotic units show off ability to reconfigure into different systems for different tasks in online .wmv files

Wei-Min Shen of the University of Southern California's Information Sciences Institute recently reported to NASA significant progress in developing "SuperBot," identical modular units that plug into each other to create robots that can stand, crawl, wiggle and even roll. He illustrated his comments with striking video of the system in action, video now posted on line.

Shen's presentation took place at the Space Technology and Applications International Forum 2007 (STAIF) held in Albuquerque, New Mexico. For the report, he first offered a description of the SuperBot work:

"Superbot consists of Lego-like but autonomous robotic modules that can reconfigure into different systems for different tasks. Examples of configurable systems include rolling tracks or wheels (for efficient travel), spiders or centipedes (for climbing), snakes (for burrowing in ground), long arms (for inspection and repair in space), and devices that can fly in micro-gravity environment.

"Each module is a complete robotic system and has a power supply, micro- controllers, sensors, communication, three degrees of freedom, and six connecting faces (front, back, left, right, up and down) to dynamically connect to other modules.

"This design allows flexible bending, docking, and continuous rotation. A single module can move forward, back, left, right, flip-over, and rotate as a wheel. Modules can communication with each other for totally distributed control and can support arbitrary module reshuffling during their operation.

"They have both internal and external sensors for monitoring self status and environmental parameters. They can form arbitrary configurations (graphs) and can control these configurations for different functionality such as locomotion, manipulation, and self-repair."

Shen illustrated his words with SuperBot action video showing these processes.

He and his colleagues and students made the fillms in just one week, immediately after completing the mechanics and electronics hardware for the latest batch of SuperBot modules at the beginning of February.

"The fact that SuperBot can achieve so much in so short a time demonstrates the unique value of modular, multifunctional and self-reconfigurable robots," Shen said.

Follow the links below to view .wmv files of some of the videos:

Rope climbing between buildings:
http://www.isi.edu/robots/superbot/movies/Feb2007/ropeclimber.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/fastropeclimber.wmv
Rolling:
http://www.isi.edu/robots/superbot/movies/Feb2007/rollingtrack1.wmv
Caterpillar on beach and in room:
http://www.isi.edu/robots/superbot/movies/Feb2007/beach-caterpillar.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/rough-catapillar.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/caterpillar.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/ninja-caterpillar.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/hard-at-work.wmv
Climbing on sand dune, river bank, and in room:
http://www.isi.edu/robots/superbot/movies/Feb2007/sand-climber.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/climbcreek.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/carpet-climber.wmv
Sidewindering:
http://www.isi.edu/robots/superbot/movies/Feb2007/sidewinder7mod.wmv
Climbing on a fishing net:
http://www.isi.edu/robots/superbot/movies/Feb2007/netclimb1.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/netclimb2.wmv
Carrying a camera:
http://www.isi.edu/robots/superbot/movies/Feb2007/climberCam.wmv
Walking:
http://www.isi.edu/robots/superbot/movies/Feb2007/walker1.wmv
Butterflying:
http://www.isi.edu/robots/superbot/movies/Feb2007/t-swim.wmv
http://www.isi.edu/robots/superbot/movies/Feb2007/creep.wmv
Collaborations:
http://www.isi.edu/robots/superbot/movies/Feb2007/synch-swim.wmv
Searching and connecting:
http://www.isi.edu/robots/superbot/movies/Feb2007/docking.wmv
Shape shifting:
http://www.isi.edu/robots/superbot/movies/Feb2007/reconfigure_
shape_dependent.wmv

Eric Mankin | EurekAlert!
Further information:
http://www.usc.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>