Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enter 'Junior': Stanford team's next-generation robot joins DARPA Urban Challenge

20.02.2007
When five autonomous vehicles, including the Stanford Racing Team's winning entry "Stanley," finished the 2005 Grand Challenge in the still Nevada desert, they passed a milestone of artificial intelligence. The robots in the 2007 Urban Challenge, however, will have to handle traffic. It is a tougher test that calls for a new generation of technology. Enter "Junior," the Stanford Racing Team's new brainchild.

"In the last Grand Challenge, it didn't really matter whether an obstacle was a rock or a bush, because either way you'd just drive around it," says Sebastian Thrun, an associate professor of computer science and electrical engineering. "The current challenge is to move from just sensing the environment to understanding the environment."

That's because in the Urban Challenge, sponsored by the Defense Advanced Research Projects Agency (DARPA), the competing robots will have to accomplish missions in a simulated city environment, which includes the traffic of the other robots and traffic laws. This means that on race day, Nov. 3, the robots not only will have to avoid collisions, but also they will have to master concepts that befuddle many humans, such as right of way.

"This has a component of prediction," says Mike Montemerlo, a senior research engineer in the Stanford Artificial Intelligence Lab (SAIL). "There are other intelligent robot drivers out in the world. They are all making decisions. Predicting what they are going to do in the future is a hard problem that is important to driving. Is it my turn at the intersection? Do I have time to get across the intersection before somebody hits me?"

Racing team leaders Thrun and Montemerlo will discuss Junior for the first time Feb. 17 at the annual conference of the American Association for the Advancement of Science in San Francisco. Thrun will join fellow roboticists in a panel discussion, "Robots-Our Future's Sustainable Partner." He will speak about autonomous guidance systems and machine vision. Afterward, he and Montemerlo will participate in a press conference.

The racing team, based in the Stanford School of Engineering, is supported by returning industry team members Intel, MDV-Mohr Davidow Ventures, Red Bull and Volkswagen of America and joined this year by new supporters Applanix, Google and NXP Semiconductors. DARPA also has provided $1 million of funding.

Introducing Junior

Junior is a 2006 Passat wagon whose steering, throttle and brakes all have been modified by engineers at the Volkswagen of America Electronics Research Laboratory in Palo Alto, Calif., to be completely computer-controllable. The engineers also have created custom mountings for a bevy of sophisticated sensors.

An important difference between Junior and Stanley is that Junior must be aware of fast- moving objects all around it, while Stanley only had to grapple with still objects in front of it. Junior's sensors are therefore much more sophisticated, Thrun says. They include a range-finding laser array that spins to provide a 360-degree, three-dimensional view of the surrounding environment in near real-time. The laser array is accompanied by a device with six video cameras that "see" all around the car. Junior also uses bumper-mounted lasers, radar, Global Positioning System receivers and inertial navigation hardware to collect data about where it is and what is around.

Because Junior collects much more data than Stanley did, its computational hardware must be commensurately more powerful, says Montemerlo. Using Core 2 Duo processors-each chip includes multiple processing units-Junior's "brain" is about four times more powerful than Stanley's.

But what makes Junior truly autonomous will be its software, which is the focus of about a dozen students, faculty and researchers at SAIL. Modules for tasks such as perception, mapping and planning give Junior the machine-learning ability to improve its driving and to convert raw sensor data into a cohesive understanding of its situation.

New software development began last fall. Montemerlo has been testing some of the team's software modules in simulated traffic situations since the beginning of the year. The team expects to move into full-time testing and iterative improvement by the end of March.

Junior's name is not only an implicit homage to its predecessor, but also to Stanford University's namesake, Leland Stanford Jr. Carrying this sense of history, Junior will set out to make technology history of its own and pave the way to a future where autonomous cars can make driving safer, more accessible and more efficient. Self-driving cars could give drivers newfound free time.

"You could claim that moving from pixelated perception, where the robot looks at sensor data, to understanding and predicting the environment is a Holy Grail of artificial intelligence," says Thrun.

David Orenstein | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>