Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enter 'Junior': Stanford team's next-generation robot joins DARPA Urban Challenge

20.02.2007
When five autonomous vehicles, including the Stanford Racing Team's winning entry "Stanley," finished the 2005 Grand Challenge in the still Nevada desert, they passed a milestone of artificial intelligence. The robots in the 2007 Urban Challenge, however, will have to handle traffic. It is a tougher test that calls for a new generation of technology. Enter "Junior," the Stanford Racing Team's new brainchild.

"In the last Grand Challenge, it didn't really matter whether an obstacle was a rock or a bush, because either way you'd just drive around it," says Sebastian Thrun, an associate professor of computer science and electrical engineering. "The current challenge is to move from just sensing the environment to understanding the environment."

That's because in the Urban Challenge, sponsored by the Defense Advanced Research Projects Agency (DARPA), the competing robots will have to accomplish missions in a simulated city environment, which includes the traffic of the other robots and traffic laws. This means that on race day, Nov. 3, the robots not only will have to avoid collisions, but also they will have to master concepts that befuddle many humans, such as right of way.

"This has a component of prediction," says Mike Montemerlo, a senior research engineer in the Stanford Artificial Intelligence Lab (SAIL). "There are other intelligent robot drivers out in the world. They are all making decisions. Predicting what they are going to do in the future is a hard problem that is important to driving. Is it my turn at the intersection? Do I have time to get across the intersection before somebody hits me?"

Racing team leaders Thrun and Montemerlo will discuss Junior for the first time Feb. 17 at the annual conference of the American Association for the Advancement of Science in San Francisco. Thrun will join fellow roboticists in a panel discussion, "Robots-Our Future's Sustainable Partner." He will speak about autonomous guidance systems and machine vision. Afterward, he and Montemerlo will participate in a press conference.

The racing team, based in the Stanford School of Engineering, is supported by returning industry team members Intel, MDV-Mohr Davidow Ventures, Red Bull and Volkswagen of America and joined this year by new supporters Applanix, Google and NXP Semiconductors. DARPA also has provided $1 million of funding.

Introducing Junior

Junior is a 2006 Passat wagon whose steering, throttle and brakes all have been modified by engineers at the Volkswagen of America Electronics Research Laboratory in Palo Alto, Calif., to be completely computer-controllable. The engineers also have created custom mountings for a bevy of sophisticated sensors.

An important difference between Junior and Stanley is that Junior must be aware of fast- moving objects all around it, while Stanley only had to grapple with still objects in front of it. Junior's sensors are therefore much more sophisticated, Thrun says. They include a range-finding laser array that spins to provide a 360-degree, three-dimensional view of the surrounding environment in near real-time. The laser array is accompanied by a device with six video cameras that "see" all around the car. Junior also uses bumper-mounted lasers, radar, Global Positioning System receivers and inertial navigation hardware to collect data about where it is and what is around.

Because Junior collects much more data than Stanley did, its computational hardware must be commensurately more powerful, says Montemerlo. Using Core 2 Duo processors-each chip includes multiple processing units-Junior's "brain" is about four times more powerful than Stanley's.

But what makes Junior truly autonomous will be its software, which is the focus of about a dozen students, faculty and researchers at SAIL. Modules for tasks such as perception, mapping and planning give Junior the machine-learning ability to improve its driving and to convert raw sensor data into a cohesive understanding of its situation.

New software development began last fall. Montemerlo has been testing some of the team's software modules in simulated traffic situations since the beginning of the year. The team expects to move into full-time testing and iterative improvement by the end of March.

Junior's name is not only an implicit homage to its predecessor, but also to Stanford University's namesake, Leland Stanford Jr. Carrying this sense of history, Junior will set out to make technology history of its own and pave the way to a future where autonomous cars can make driving safer, more accessible and more efficient. Self-driving cars could give drivers newfound free time.

"You could claim that moving from pixelated perception, where the robot looks at sensor data, to understanding and predicting the environment is a Holy Grail of artificial intelligence," says Thrun.

David Orenstein | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>