Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Right counter height can improve fingerprint capture

23.01.2007
Once a tool primarily used by law enforcement, biometric technologies such as fingerprint readers increasingly are being used by governments and private industry for a personal ID that can't easily be forged or stolen.

But, despite their increased use, little attention has been paid to the human-system interaction that these technologies require. With fingerprint scanners and other imaging devices, for example, user behavior can affect both the quality of the image and the time required to capture it.

At present there are no guidelines for using biometric hardware and software that could lead to improved usability and interaction techniques.

As part of its role under the USA PATRIOT Act, researchers at the National Institute of Standards and Technology (NIST) conducted a study examining the effect of the work surface height of a fingerprint sensor on the quality and the time required to collect prints. NIST researchers collected five types of fingerprint images from 75 NIST employees, ranging in age from 17 to 67.

Images were collected from a "left slap"; (all fingers on the left hand except for the thumb); a "right slap"; a left or right thumb; and both thumbs. Work surface heights varied from 26 inches (660 millimeters) to 42 inches (1,067 millimeters). The fingerprint scanner used in the study had a height of 6 inches (152 millimeters)--the expected height of the next generation of fingerprint scanners to be used in many federal government applications.

The researchers found that participants performed fastest using a work surface height of 36 inches (914 millimeters); and a height of 26 inches (660 millimeters) produced the highest image quality. Participants preferred a work surface height of 32 or 36 inch (813 or 914 millimeters); the 42 inch height was most uncomfortable. Seventy-six percent of the participants preferred starting with their right hands, which also made the process faster. Quality dropped dramatically when thumbprints were taken simultaneously rather than one at a time.

Jan Kosko | EurekAlert!
Further information:
http://www.nist.gov
http://zing.ncsl.nist.gov/biousa/docs/NISTIR-7382-Height%20Study.pdf

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>