Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prussian Blue for information storage

19.01.2007
In the family of Prussian blue, there is a compound that can act as a switch: it is not magnetic at the outset, but it can become magnetized by the effect of light and return to its initial state by heating.

Researchers of the Institute of Molecular Chemistry and Materials of Orsay (CNRS/University of Paris XI) and the Laboratory of Inorganic Chemistry and Molecular Materials (CNRS/University of Paris VI) showed that this change of state is due to the collective modification of the position of the atoms, induced by light. Such compounds, which can memorize binary information, could be used as storage bits for future computers. This work was presented in the journal Angewandte Chemie International Edition (after the online publication of January 9, 2007).

In the field of computers, society's demand for capacity to store information is increasing exponentially and has led to the development of the nanosciences: storing ever larger quantities of information in volumes as small as possible and as rapidly as possible. The first hard disk, the RAMAC, built by IBM in 1954, weighed one ton and stored five megabytes. In today's portable computers and MP3 readers, the hard disks store several gigabytes and weigh only a few hundred or even a few dozen grams. To further miniaturize these devices and to give users greater freedom, many chemists are making new switchable materials, i.e. ones that can switch from one state (OFF = 0) to another (ON = 1) by the effect of an outside impulse (variation of temperature, pressure, light, magnetic or electrical impulse), keeping the memory of the state in which they were found. The chemists of the two teams hope in this way to succeed in storing information on the scale of a few atoms.

They are working on Prussian blue. By replacing some of the atoms or iron with cobalt, they transform this pigment known since ancient times into a compound that can act as a switch: illuminated by a red light at low temperature (-150°C), this compound shifts from a non-magnetic state (OFF) to a magnetic state (ON) in a way that is stable over time. If it is heated, it returns to the OFF state. This change of state is due to the transfer of an electron from the cobalt to the iron (and vice-versa), by absorption of light or thermal energy.

Today, using synchrotron radiation, chemists have observed a collective modification of the position of the atoms in space, induced by the shift of the electron from one atom to the other. When the electron goes from the iron atom (OFF state) to the cobalt atom (ON state) due to the red light, the three-dimensional links between the cobalt, nitrogen, carbon and iron atoms, which were initially bent, become linear. This structural modification is responsible for the existence of this magnetic state and its stability over time. This knowledge on the atomic scale of the mechanisms associated with ON/OFF switching is an essential first step for chemists towards imagining materials that could be used by industry to store information on the scale of a few atoms.

These new compounds perfectly reproduce the storage function of traditional components. As it will soon be impossible to reduce the size of the current components without having them lose their memory functions, chemists are dreaming up materials that could take over and meet society's demand for miniaturized information storage.

Monica Mccarthy | EurekAlert!
Further information:
http://www.cnrs-dir.fr

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>