Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prussian Blue for information storage

19.01.2007
In the family of Prussian blue, there is a compound that can act as a switch: it is not magnetic at the outset, but it can become magnetized by the effect of light and return to its initial state by heating.

Researchers of the Institute of Molecular Chemistry and Materials of Orsay (CNRS/University of Paris XI) and the Laboratory of Inorganic Chemistry and Molecular Materials (CNRS/University of Paris VI) showed that this change of state is due to the collective modification of the position of the atoms, induced by light. Such compounds, which can memorize binary information, could be used as storage bits for future computers. This work was presented in the journal Angewandte Chemie International Edition (after the online publication of January 9, 2007).

In the field of computers, society's demand for capacity to store information is increasing exponentially and has led to the development of the nanosciences: storing ever larger quantities of information in volumes as small as possible and as rapidly as possible. The first hard disk, the RAMAC, built by IBM in 1954, weighed one ton and stored five megabytes. In today's portable computers and MP3 readers, the hard disks store several gigabytes and weigh only a few hundred or even a few dozen grams. To further miniaturize these devices and to give users greater freedom, many chemists are making new switchable materials, i.e. ones that can switch from one state (OFF = 0) to another (ON = 1) by the effect of an outside impulse (variation of temperature, pressure, light, magnetic or electrical impulse), keeping the memory of the state in which they were found. The chemists of the two teams hope in this way to succeed in storing information on the scale of a few atoms.

They are working on Prussian blue. By replacing some of the atoms or iron with cobalt, they transform this pigment known since ancient times into a compound that can act as a switch: illuminated by a red light at low temperature (-150°C), this compound shifts from a non-magnetic state (OFF) to a magnetic state (ON) in a way that is stable over time. If it is heated, it returns to the OFF state. This change of state is due to the transfer of an electron from the cobalt to the iron (and vice-versa), by absorption of light or thermal energy.

Today, using synchrotron radiation, chemists have observed a collective modification of the position of the atoms in space, induced by the shift of the electron from one atom to the other. When the electron goes from the iron atom (OFF state) to the cobalt atom (ON state) due to the red light, the three-dimensional links between the cobalt, nitrogen, carbon and iron atoms, which were initially bent, become linear. This structural modification is responsible for the existence of this magnetic state and its stability over time. This knowledge on the atomic scale of the mechanisms associated with ON/OFF switching is an essential first step for chemists towards imagining materials that could be used by industry to store information on the scale of a few atoms.

These new compounds perfectly reproduce the storage function of traditional components. As it will soon be impossible to reduce the size of the current components without having them lose their memory functions, chemists are dreaming up materials that could take over and meet society's demand for miniaturized information storage.

Monica Mccarthy | EurekAlert!
Further information:
http://www.cnrs-dir.fr

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>