Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Networks could self-organise sooner than we think

22.11.2006
Almost unknown three years ago, autonomic communication has exploded onto the networking scene. The field’s growing popularity owes much to ‘self-organisation’, a radical new approach to solving the problems of today’s complex networks. Recently explored by a European project, self-organisation has also given birth to an independent body to drive forward related research.

“In 2003, anyone searching for the term ‘autonomic communication’ on Google would have found two references. As of November this year, there are almost twenty one thousand,” says Mikhail Smirnov of the Fraunhofer Institute for Open Communication Systems (FOKUS) in Berlin.

Professor Smirnov coordinates the ACCA project, a Future and Emerging Technologies (FET) initiative that ended in September 2006. He and his colleagues have played a large role in raising awareness of this new field, and they are rightly proud of the phenomenal progress of autonomic communication. Smirnov points to a dozen journals on the subject, multiple IEEE and IFIP conferences, four EU integrated projects and several similar projects set up by leading European telecom companies.

The partners in ACCA were responsible for setting a research roadmap, rising awareness and bringing together relevant but disjoint efforts within related initiatives. Though some of these initiatives focus on work unlikely to generate market-ready technology for some years, others are linked to more market-oriented research, including several projects under the IST programme – Ambient Networks, E2R and others.

“Our main achievement was getting the Autonomic Communication Forum (ACF) up and running,” notes Smirnov. Launched in Brussels in late 2004, the ACF already has more than 230 members.

The forum is building a global research community for autonomic communications, and will eventually become an industry standardisation body. The body is built on the premise that a new form of networking – one that is self-organising, self-managing, context-aware and autonomous – is the best way to handle the internet’s growing complexity and the demands placed on it.

Smirnov underlines the fact that the project was deliberately extended to allow the team to stay together for Autonomic Networking 2006, a conference held in Paris from 25-29 September 2006. The project team took charge of an ACF session, which resulted in ACF decision to respond to any future calls under the Seventh Framework Programme (FP7) in a coordinated manner.

Asked for a brief definition of autonomic communication, Smirnov replies “self-management”. But he notes that the term encompasses a host of other technologies, all of which begin with the word “self”. Among them are self-awareness, self-configuration, self-healing and self-implementation.

“Together these technologies allow a network to automatically address many of today’s internet challenges,” says Smirnov. They could, for instance, help networks to guarantee online identity – thus tackling the lack of security and trust still associated with web commerce.

Autonomic communication could also benefit next-generation networks. Smirnov notes how internet service providers (ISPs) struggle to manage wholesale interfaces – the interface for data traffic between themselves: “Corporate and retail customers stay within a network, so ISPs can prioritise the way they handle this traffic and charge more. But when traffic crosses wholesale interfaces, prioritisation mechanisms break down and ISPs find it harder to charge for service differentiation. Self-management could change that.”

Future networking technologies will also have to solve many internet problems at once. Autonomic communications represent a new design approach to such problems. They offer manageability and therefore address the question of complexity – which Smirnov calls “the big challenge”, especially for telecom companies.

“Top of the pyramid of technologies is self-management. We believe this is the solution to networking complexity,” Smirnov says. “Not least because it is unaffected by hardware and software developments.”

He adds that although self-management makes a system apparently simpler for an administrator, below the surface the complexity is still there. “It’s not about putting intelligence into hardware, but making networks behave intelligently without human intervention.”

One of the companies attracted by the project was Gingko Networks – a start-up company in autonomic communication. “Its multi-agent approach works on network functionality,” says Smirnov. This system calls on several autonomic communication features, and is already in use by France Telecom.

He emphasises, however, that the project partners were involved in coordination rather than technical work: “We made sure researchers were on the right track, and that projects were building a consensus on a roadmap for this networking solution – one example of which is the Self-Management Technology Platform.”

Smirnov expects autonomic communication to have a major impact within five years. “Companies like my own are working on related technologies, systems and services. The look and feel of communication devices will change, facilitating communications with one’s community."

"Today, these communications are via an ISP or gateway – in future people will be connected directly to their contacts,” says Smirnov. Ultimately, he adds, the telecom business model needs reinventing to enable better links between users, content and service.

Jernett Karensen | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>