Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ascending safely from the depth

06.11.2006
Ascending from great depths can be a risky process. A personally adjusted dive computer increases safety.

Decompression sickness occurs in connection with rapid ascent from deep sea – from high pressure to low pressure – and is caused by formation of gas in the human body. Just as soft drinks contain carbonic acid, blood contains physically dissolved gases. These gases may form bubbles when the pressure drops. Ascending from deep sea is like opening the screw cap of a bottle of carbonated water: The pressure decreases, and bubbles are released.

The more the pressure drops, the larger the bubbles become. The bubbles can develop in different tissues in the body, or in the bloodstream. If a large gas bubble develops in a blood vessel, the bubble may function as a blood clot.

Researchers at NTNU have discovered more of how these bubbles behave and change as divers ascend to the surface. This knowledge will influence the emergency procedures for professional divers and submarine personnel – and may also be used to develop an individually adjusted dive computer.

PIGS SHOW THE WAY - “In theory, the best ascending profile is to rise slowly and gradually, from all depths. But this is not feasible in practice,” says research fellow Andreas Møllerløkken. “The water movements make it too difficult.”

That is why deep or prolonged dives require the divers to make safety stops on their way to the surface to prevent the pressure drop of becoming a shock to the organism. This is normal procedure today.

Møllerløkken and his fellow researcher Christian Gutvik discovered that divers should not only make ordinary safety stops, but actually go a bit further down towards the depth afterwards. In this instance, the ‘divers’ were pigs in pressure chambers. Thanks to these pigs, the researchers were able to map how gas bubbles are formed and change under different conditions.

“We know now what happens with gases in the blood when the pressure changes. And we have seen that this can be influenced by medication,” Møllerløkken explains.

TAILORMADE COMPUTER - The two researchers at the Department of Circulation and Imaging at NTNU are currently developing the inside of a new dive computer. It ’monitors’ the diver in a totally new way and makes him more secure in deep water because it is based on his own physical condition.

A dive computer is usually attached to the wrist and has a depth sensor and a watch. It is programmed to inform the diver of how much time he has left before he must begin ascending to the surface. It also indicates whether safety stops are necessary. However, it is based on theoretical tables of how gases behave in different types of tissues. It makes no consideration to individual factors which strongly influence how gases are absorbed by the blood and the formation of bubbles: the diver's height, weight, body fat percentage, maximum and minimum pulse rates, oxygen uptake, and gender.

The diver feeds the new computer with his personal data. This information, combined with continuous measuring of the pulse, enables the computer to calculate how the body is affected by the dive and tell at any time how the ascent to the surface should be performed.

Measuring the pulse is essential. The heart rate indicates the blood flow in the body, which determines the uptake of gases. For instance, if a person dives with a pulse rate close to maximum pulse over a certain period of time, the gas uptake in the body will be totally different from that of relaxing leisure dives.

The Swiss producer Uwatec wishes to put the new dive computer into production. The features were tested in the Red Sea in January, but some quality assurance remains before the computer is released on the market – probably in 2008.

PINCHING MARGINS - To amateur divers, the time they spends rising to the surface, is wasted. To professional divers, it also represents a loss of money. But if the ascent is to take place without risk, it must not happen too quickly. For this reason, existing safety routines for divers include large safety margins.

The routines are, however, not based on how gas actually behaves in a diver’s body. Research fellows Møllerløkken and Gutvik wish to incorporate the knowledge of bubbles into the safety routines.

“In practice, a bubble-based ascent profile may allow a faster ascent, since it better describes reality. There will no longer be a need for unnecessarily conservative safety margins,” concludes Andreas Møllerløkken.

By Hege J. Tunstad

Nina Tveter | alfa
Further information:
http://www.ntnu.no

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>