Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ascending safely from the depth

06.11.2006
Ascending from great depths can be a risky process. A personally adjusted dive computer increases safety.

Decompression sickness occurs in connection with rapid ascent from deep sea – from high pressure to low pressure – and is caused by formation of gas in the human body. Just as soft drinks contain carbonic acid, blood contains physically dissolved gases. These gases may form bubbles when the pressure drops. Ascending from deep sea is like opening the screw cap of a bottle of carbonated water: The pressure decreases, and bubbles are released.

The more the pressure drops, the larger the bubbles become. The bubbles can develop in different tissues in the body, or in the bloodstream. If a large gas bubble develops in a blood vessel, the bubble may function as a blood clot.

Researchers at NTNU have discovered more of how these bubbles behave and change as divers ascend to the surface. This knowledge will influence the emergency procedures for professional divers and submarine personnel – and may also be used to develop an individually adjusted dive computer.

PIGS SHOW THE WAY - “In theory, the best ascending profile is to rise slowly and gradually, from all depths. But this is not feasible in practice,” says research fellow Andreas Møllerløkken. “The water movements make it too difficult.”

That is why deep or prolonged dives require the divers to make safety stops on their way to the surface to prevent the pressure drop of becoming a shock to the organism. This is normal procedure today.

Møllerløkken and his fellow researcher Christian Gutvik discovered that divers should not only make ordinary safety stops, but actually go a bit further down towards the depth afterwards. In this instance, the ‘divers’ were pigs in pressure chambers. Thanks to these pigs, the researchers were able to map how gas bubbles are formed and change under different conditions.

“We know now what happens with gases in the blood when the pressure changes. And we have seen that this can be influenced by medication,” Møllerløkken explains.

TAILORMADE COMPUTER - The two researchers at the Department of Circulation and Imaging at NTNU are currently developing the inside of a new dive computer. It ’monitors’ the diver in a totally new way and makes him more secure in deep water because it is based on his own physical condition.

A dive computer is usually attached to the wrist and has a depth sensor and a watch. It is programmed to inform the diver of how much time he has left before he must begin ascending to the surface. It also indicates whether safety stops are necessary. However, it is based on theoretical tables of how gases behave in different types of tissues. It makes no consideration to individual factors which strongly influence how gases are absorbed by the blood and the formation of bubbles: the diver's height, weight, body fat percentage, maximum and minimum pulse rates, oxygen uptake, and gender.

The diver feeds the new computer with his personal data. This information, combined with continuous measuring of the pulse, enables the computer to calculate how the body is affected by the dive and tell at any time how the ascent to the surface should be performed.

Measuring the pulse is essential. The heart rate indicates the blood flow in the body, which determines the uptake of gases. For instance, if a person dives with a pulse rate close to maximum pulse over a certain period of time, the gas uptake in the body will be totally different from that of relaxing leisure dives.

The Swiss producer Uwatec wishes to put the new dive computer into production. The features were tested in the Red Sea in January, but some quality assurance remains before the computer is released on the market – probably in 2008.

PINCHING MARGINS - To amateur divers, the time they spends rising to the surface, is wasted. To professional divers, it also represents a loss of money. But if the ascent is to take place without risk, it must not happen too quickly. For this reason, existing safety routines for divers include large safety margins.

The routines are, however, not based on how gas actually behaves in a diver’s body. Research fellows Møllerløkken and Gutvik wish to incorporate the knowledge of bubbles into the safety routines.

“In practice, a bubble-based ascent profile may allow a faster ascent, since it better describes reality. There will no longer be a need for unnecessarily conservative safety margins,” concludes Andreas Møllerløkken.

By Hege J. Tunstad

Nina Tveter | alfa
Further information:
http://www.ntnu.no

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>