Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual reality simulator lands at McMaster University

26.09.2006
It's the shape and colour of a futuristic space ship. It holds the promise of drawing more young people into the field of information technology.

McMaster University has unveiled the first interactive motion simulator to be used for teaching undergraduate students how to develop software for simulated flight, driving, real-time game design, medical research, virtual reality systems, and a host of other applications.

The mini-van-sized simulator can accommodate up to five people and features a space-ship-pod fiberglass shell, interior projection system and a Dolby digital surround-sound system. It sits on a Moog-built, six-degrees-of- freedom (surge, sway, heave, roll, pitch, yaw), Steward platform with a 1000 Kg (2,205 pound) payload and 0.6 Gs of acceleration (equivalent to a high-performance sports car).

"It is the same simulator technology used by industry for product development and training but now applied in a classroom setting for teaching," explains Martin von Mohrenschildt, Chair of Computing and Software in the Faculty of Engineering at McMaster University. "Demand for this knowledge continues to increase. For example, automobiles and aircrafts are now first developed virtually and tested using a simulator, before a prototype is built."

The simulator is one of the more visible elements of a new approach to computing and software education that has been developed by the Faculty of Engineering at McMaster. The Faculty is responding to a general decline in university enrollment for computer science and software engineering programs at a time when demand for information technology employees is growing. Other initiatives undertaken include the launch of a degree program in software engineering and game design, as well as programs in mechatronics engineering and business informatics. Plans for a medical informatics program are also underway.

"We are working to dispel the mistaken notion some people have that there are limited career opportunities in information technology," said von Mohrenschildt. "We are developing programs and curriculum around practical applications of computer science and software engineering. Information technology is not just about writing code or building personal computers. It is about creating solutions and solving real problems faced by industry, business, medicine, entertainment, and every sector of our society."

"The simulator is an entry point for students to learn the latest in 4D- modelling techniques for virtual reality, real-time systems and control, animation tools, user interfaces, and sensory feedback," said von Mohrenschildt. "This technology is finding and driving countless other fields including audio and visual modeling, flight simulation, design prototyping, architectural visualization, animation, and digital image processing."

Gene Nakonechny | EurekAlert!
Further information:
http://www.mcmaster.ca

More articles from Information Technology:

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>