Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers reveal 'extremely serious' vulnerabilities in e-voting machines

In a paper published on the Web today, a group of Princeton computer scientists said they created demonstration vote-stealing software that can be installed within a minute on a common electronic voting machine. The software can fraudulently change vote counts without being detected.

"We have created and analyzed the code in the spirit of helping to guide public officials so that they can make wise decisions about how to secure elections," said Edward Felten, the director of the Center for Information Technology Policy, a new center at Princeton University that addresses crucial issues at the intersection of society and computer technology.

The paper appears on the Web site for the Center for Information Technology Policy.

The researchers obtained the machine, a Diebold AccuVote-TS, from a private party in May. They spent the summer analyzing the machine and developing the vote-stealing demonstration.

"We found that the machine is vulnerable to a number of extremely serious attacks that undermine the accuracy and credibility of the vote counts it produces," wrote Felten and his co-authors, graduate students Ariel Feldman and Alex Halderman.

In a 10-minute video on their Web site, the researchers demonstrate how the vote-stealing software works. The video shows the software sabotaging a mock presidential election between George Washington and Benedict Arnold. Arnold is reported as the winner even though Washington gets more votes. (The video is edited from a longer continuously shot video; the long single-shot version will be available for downloading from the center's site as well.)

The researchers also demonstrate how the machines "are susceptible to computer viruses that can spread themselves automatically and invisibly from machine to machine during normal pre- and post-election activity."

Felten said that policy-makers should be concerned about malicious software infecting the Diebold AccuVote-TS and machines like it, from Diebold and other companies. "We studied these machines because they were available to us," the researchers wrote in their Web posting. "If we had gotten access to another kind of machine, we probably would have studied it instead."

Felten said, "There is reason for concern about other machines as well, even though our paper doesn't directly evaluate them. Jurisdictions using these machines should think seriously about finding a backup system in time for the November elections."

Felten, a professor of computer science and public affairs who is known for his groundbreaking work in computer security, said that some of the problems discussed in the paper cannot be fixed without completely redesigning the machine.

Other problems can be fixed by addressing software or electronic procedures. "But time is short before the next election," he said.

According to the researchers' paper, the Diebold machine they examined and another newer version are scheduled to be used in 357 U.S. counties representing nearly 10 percent of all registered voters. About half those counties, including all Maryland and Georgia, will use the exact machine examined by Felten's group.

Felten said that, out of security concerns, the Diebold machine infected with the vote-stealing software has been kept under lock and key in a secret location.

"Unfortunately election fraud has a rich history from ballot stuffing to dead people voting," he said. "We want to make sure this doesn't fall into the wrong hands. We also want to make sure that policy-makers stay a step ahead of those who might create similar software with ill intent."

Teresa Riordan | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Next Generation Cryptography
20.03.2018 | Fraunhofer-Institut für Sichere Informationstechnologie SIT

nachricht TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation
19.03.2018 | Technische Informationsbibliothek (TIB)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>