Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers reveal 'extremely serious' vulnerabilities in e-voting machines

15.09.2006
In a paper published on the Web today, a group of Princeton computer scientists said they created demonstration vote-stealing software that can be installed within a minute on a common electronic voting machine. The software can fraudulently change vote counts without being detected.

"We have created and analyzed the code in the spirit of helping to guide public officials so that they can make wise decisions about how to secure elections," said Edward Felten, the director of the Center for Information Technology Policy, a new center at Princeton University that addresses crucial issues at the intersection of society and computer technology.

The paper appears on the Web site for the Center for Information Technology Policy.

The researchers obtained the machine, a Diebold AccuVote-TS, from a private party in May. They spent the summer analyzing the machine and developing the vote-stealing demonstration.

"We found that the machine is vulnerable to a number of extremely serious attacks that undermine the accuracy and credibility of the vote counts it produces," wrote Felten and his co-authors, graduate students Ariel Feldman and Alex Halderman.

In a 10-minute video on their Web site, the researchers demonstrate how the vote-stealing software works. The video shows the software sabotaging a mock presidential election between George Washington and Benedict Arnold. Arnold is reported as the winner even though Washington gets more votes. (The video is edited from a longer continuously shot video; the long single-shot version will be available for downloading from the center's site as well.)

The researchers also demonstrate how the machines "are susceptible to computer viruses that can spread themselves automatically and invisibly from machine to machine during normal pre- and post-election activity."

Felten said that policy-makers should be concerned about malicious software infecting the Diebold AccuVote-TS and machines like it, from Diebold and other companies. "We studied these machines because they were available to us," the researchers wrote in their Web posting. "If we had gotten access to another kind of machine, we probably would have studied it instead."

Felten said, "There is reason for concern about other machines as well, even though our paper doesn't directly evaluate them. Jurisdictions using these machines should think seriously about finding a backup system in time for the November elections."

Felten, a professor of computer science and public affairs who is known for his groundbreaking work in computer security, said that some of the problems discussed in the paper cannot be fixed without completely redesigning the machine.

Other problems can be fixed by addressing software or electronic procedures. "But time is short before the next election," he said.

According to the researchers' paper, the Diebold machine they examined and another newer version are scheduled to be used in 357 U.S. counties representing nearly 10 percent of all registered voters. About half those counties, including all Maryland and Georgia, will use the exact machine examined by Felten's group.

Felten said that, out of security concerns, the Diebold machine infected with the vote-stealing software has been kept under lock and key in a secret location.

"Unfortunately election fraud has a rich history from ballot stuffing to dead people voting," he said. "We want to make sure this doesn't fall into the wrong hands. We also want to make sure that policy-makers stay a step ahead of those who might create similar software with ill intent."

Teresa Riordan | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>