Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SWAN system to help blind and firefighters navigate environment

17.08.2006
System integrates robotic technology and auditory signals

Imagine being blind and trying to find your way around a city you've never visited before -- that can be challenging for a sighted person. Georgia Tech researchers are developing a wearable computing system called the System for Wearable Audio Navigation (SWAN) designed to help the visually impaired, firefighters, soldiers and others navigate their way in unknown territory, particularly when vision is obstructed or impaired. The SWAN system, consisting of a small laptop, a proprietary tracking chip, and bone-conduction headphones, provides audio cues to guide the person from place to place, with or without vision.

"We are excited by the possibilities for people who are blind and visually impaired to use the SWAN auditory wayfinding system," said Susan B. Green, executive director, Center for the Visually Impaired in Atlanta. "Consumer involvement is crucial in the design and evaluation of successful assistive technology, so CVI is happy to collaborate with Georgia Tech to provide volunteers who are blind and visually impaired for focus groups, interviews and evaluation of the system."

Collaboration

In an unusual collaboration, Frank Dellaert, assistant professor in the Georgia Tech College of Computing and Bruce Walker, assistant professor in Georgia Tech's School of Psychology and College of Computing, met five years ago at new faculty orientation and discussed how their respective areas of expertise -- determining location of robots and audio interfaces -- were complimentary and could be married in a project to assist the blind. The project progressed slowly as the researchers worked on it as time allowed and sought funding. Early support came through a seed grant from the Graphics, Visualization and Usability (GVU) Center at Georgia Tech, and recently Walker and Dellaert received a $600,000 grant from the National Science Foundation to further develop SWAN.

Dellaert's artificial intelligence research focuses on tracking and determining the location of robots and developing applications to help robots determine where they are and where they need to go. There are similar challenges when it comes to tracking and guiding robots and people. Dellaert's robotics research usually focuses on military applications since that is where most of the funding is available.

"SWAN is a satisfying project because we are looking at how to use technology originally developed for military use for peaceful purposes," says Dellaert. "Currently, we can effectively localize the person outdoors with GPS data, and we have a working prototype using computer vision to see street level details not included in GPS, such as light posts and benches. The challenge is integrating all the information from all the various sensors in real time so you can accurately guide the user as they move toward their destination."

Walker's expertise in human computer interaction and interface design includes developing auditory displays that indicate data through sonification or sound.

"By using a modular approach in building a system useful for the visually impaired, we can easily add new sensing technologies, while also making it flexible enough for firefighters and soldiers to use in low visibility situations," says Walker. "One of our challenges has been designing sound beacons easily understood by the user but that are not annoying or in competition with other sounds they need to hear such as traffic noise."

SWAN System Overview

The current SWAN prototype consists of a small laptop computer worn in a backpack, a tracking chip, additional sensors including GPS (global positioning system), a digital compass, a head tracker, four cameras and light sensor, and special headphones called bone phones. The researchers selected bone phones because they send auditory signals via vibrations through the skull without plugging the user's ears, an especially important feature for the blind who rely heavily on their hearing. The sensors and tracking chip worn on the head send data to the SWAN applications on the laptop which computes the user's location and in what direction he is looking, maps the travel route, then sends 3-D audio cues to the bone phones to guide the traveler along a path to the destination.

The 3-D cues sound like they are coming from about 1 meter away from the user's body, in whichever direction the user needs to travel. The 3-D audio, a well-established sound effect, is created by taking advantage of humans' natural ability to detect inter-aural time differences. The 3-D sound application schedules sounds to reach one ear slightly faster than the other, and the human brain uses that timing difference to figure out where the sound originated.

The 3-D audio beacons for navigation are unique to SWAN. Other navigation systems use speech cues such as "walk 100 yards and turn left," which Walker feels is not user friendly.

"SWAN consists of two types of auditory displays – navigational beacons where the SWAN user walks directly toward the sound, and secondary sounds indicating nearby items of possible interests such as doors, benches and so forth," says Walker. "We have learned that sound design matters. We have spent a lot of time researching which sounds are more effective, such as a beep or a sound burst, and which sounds provide information but do not interrupt users when they talk on their cell phone or listen to music."

The researchers have also learned that SWAN would supplement other techniques that a blind person might already use for getting around such as using a cane to identify obstructions in the path or a guide dog.

Next Steps

The researchers' next step is to transition SWAN from outdoors-only to indoor-outdoor use. Since GPS does not work indoors, the computer vision system is being refined to bridge that gap. Also, the research team is currently revamping the SWAN applications to run on PDAs and cell phones, which will be more convenient and comfortable for users. The team plans to add an annotation feature so that a user can add other useful annotations to share with other users such as nearby coffee shops, a location of a puddle after recent rains, and perhaps even the location of a park in the distance. There are plans to commercialize the SWAN technology after further refinement, testing and miniaturizing of components for the consumer market.

Elizabeth Campell | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>