Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

SWAN system to help blind and firefighters navigate environment

17.08.2006
System integrates robotic technology and auditory signals

Imagine being blind and trying to find your way around a city you've never visited before -- that can be challenging for a sighted person. Georgia Tech researchers are developing a wearable computing system called the System for Wearable Audio Navigation (SWAN) designed to help the visually impaired, firefighters, soldiers and others navigate their way in unknown territory, particularly when vision is obstructed or impaired. The SWAN system, consisting of a small laptop, a proprietary tracking chip, and bone-conduction headphones, provides audio cues to guide the person from place to place, with or without vision.

"We are excited by the possibilities for people who are blind and visually impaired to use the SWAN auditory wayfinding system," said Susan B. Green, executive director, Center for the Visually Impaired in Atlanta. "Consumer involvement is crucial in the design and evaluation of successful assistive technology, so CVI is happy to collaborate with Georgia Tech to provide volunteers who are blind and visually impaired for focus groups, interviews and evaluation of the system."

Collaboration

In an unusual collaboration, Frank Dellaert, assistant professor in the Georgia Tech College of Computing and Bruce Walker, assistant professor in Georgia Tech's School of Psychology and College of Computing, met five years ago at new faculty orientation and discussed how their respective areas of expertise -- determining location of robots and audio interfaces -- were complimentary and could be married in a project to assist the blind. The project progressed slowly as the researchers worked on it as time allowed and sought funding. Early support came through a seed grant from the Graphics, Visualization and Usability (GVU) Center at Georgia Tech, and recently Walker and Dellaert received a $600,000 grant from the National Science Foundation to further develop SWAN.

Dellaert's artificial intelligence research focuses on tracking and determining the location of robots and developing applications to help robots determine where they are and where they need to go. There are similar challenges when it comes to tracking and guiding robots and people. Dellaert's robotics research usually focuses on military applications since that is where most of the funding is available.

"SWAN is a satisfying project because we are looking at how to use technology originally developed for military use for peaceful purposes," says Dellaert. "Currently, we can effectively localize the person outdoors with GPS data, and we have a working prototype using computer vision to see street level details not included in GPS, such as light posts and benches. The challenge is integrating all the information from all the various sensors in real time so you can accurately guide the user as they move toward their destination."

Walker's expertise in human computer interaction and interface design includes developing auditory displays that indicate data through sonification or sound.

"By using a modular approach in building a system useful for the visually impaired, we can easily add new sensing technologies, while also making it flexible enough for firefighters and soldiers to use in low visibility situations," says Walker. "One of our challenges has been designing sound beacons easily understood by the user but that are not annoying or in competition with other sounds they need to hear such as traffic noise."

SWAN System Overview

The current SWAN prototype consists of a small laptop computer worn in a backpack, a tracking chip, additional sensors including GPS (global positioning system), a digital compass, a head tracker, four cameras and light sensor, and special headphones called bone phones. The researchers selected bone phones because they send auditory signals via vibrations through the skull without plugging the user's ears, an especially important feature for the blind who rely heavily on their hearing. The sensors and tracking chip worn on the head send data to the SWAN applications on the laptop which computes the user's location and in what direction he is looking, maps the travel route, then sends 3-D audio cues to the bone phones to guide the traveler along a path to the destination.

The 3-D cues sound like they are coming from about 1 meter away from the user's body, in whichever direction the user needs to travel. The 3-D audio, a well-established sound effect, is created by taking advantage of humans' natural ability to detect inter-aural time differences. The 3-D sound application schedules sounds to reach one ear slightly faster than the other, and the human brain uses that timing difference to figure out where the sound originated.

The 3-D audio beacons for navigation are unique to SWAN. Other navigation systems use speech cues such as "walk 100 yards and turn left," which Walker feels is not user friendly.

"SWAN consists of two types of auditory displays – navigational beacons where the SWAN user walks directly toward the sound, and secondary sounds indicating nearby items of possible interests such as doors, benches and so forth," says Walker. "We have learned that sound design matters. We have spent a lot of time researching which sounds are more effective, such as a beep or a sound burst, and which sounds provide information but do not interrupt users when they talk on their cell phone or listen to music."

The researchers have also learned that SWAN would supplement other techniques that a blind person might already use for getting around such as using a cane to identify obstructions in the path or a guide dog.

Next Steps

The researchers' next step is to transition SWAN from outdoors-only to indoor-outdoor use. Since GPS does not work indoors, the computer vision system is being refined to bridge that gap. Also, the research team is currently revamping the SWAN applications to run on PDAs and cell phones, which will be more convenient and comfortable for users. The team plans to add an annotation feature so that a user can add other useful annotations to share with other users such as nearby coffee shops, a location of a puddle after recent rains, and perhaps even the location of a park in the distance. There are plans to commercialize the SWAN technology after further refinement, testing and miniaturizing of components for the consumer market.

Elizabeth Campell | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>