Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High altitude broadband is the platform for the future

19.07.2006
A three-year project led by the University of York, which aims to revolutionise broadband communications, reaches its climax later this year.

The CAPANINA project, which uses balloons, airships or unmanned solar-powered planes as high-altitude platforms (HAPs) to relay wireless and optical communications, is due to finish its main research at the end of October.

The consortium behind the project will open York HAP Week, a conference from 23 to 27 October, which will showcase the applications of HAPs, as a springboard for future development in this new high-tech sector.

The CAPANINA Final Exhibition will open the conference by highlighting the achievements of the project, which received funding from the EU under its Broadband-for-All, FP6 programme.

The consortium, drawn from Europe and Japan, has demonstrated how the system could bring low-cost broadband connections to remote areas and even to high-speed trains. It promises data rates 2,000 times faster than via a traditional modem and 100 times faster than today's 'wired' ADSL broadband.

"The potential of the system is huge, with possible applications ranging from communications for disaster management and homeland security, to environmental monitoring "

Dr David GraceCAPANINA's Principal Scientific Officer Dr David Grace said: "The potential of the system is huge, with possible applications ranging from communications for disaster management and homeland security, to environmental monitoring and providing broadband for developing countries. So far, we have considered a variety of aerial platforms, including airships, balloons, solar-powered unmanned planes and normal aeroplanes -- the latter will probably be particularly suited to establish communications very swiftly in disaster zones."

The final experimental flight will use a US-built Unmanned Aerial Vehicle (UAV) and will take place in Arizona days before the York HAP Week conference at the city's historic King's Manor.

Following the CAPANINA event, a HAP Application Symposium led by Dr Jorge Pereira, of the Information Society and Media Directorate-General of the European Commission, will provide a forum for leading experts to illustrate the potential of HAPs to opinion formers and telecommunications providers.

Completing the week will be the first HAPCOS Workshop, featuring the work of leading researchers from around Europe. It will focus on wireless and optical communications from HAPs, as well as the critically important field of HAP vehicle development.

The Chair of HAPCOS, Tim Tozer, of the University of York's Department of Electronics, said: "There are a number of projects worldwide that are proving the technology and we want to convince the telecommunications and the wider community of its potential. We are particularly keen to attract aerial vehicle providers."

The CAPANINA and HAPCOS activities have helped to forge collaborative links with more than 25 countries, including many from Europe, as well as Japan, South Korea, China, Malaysia and USA. They are seeking to develop existing partnerships and forge new ones, with researchers, entrepreneurs, industry, governments as well as end users.

Dr David Grace | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>