Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High altitude broadband is the platform for the future

19.07.2006
A three-year project led by the University of York, which aims to revolutionise broadband communications, reaches its climax later this year.

The CAPANINA project, which uses balloons, airships or unmanned solar-powered planes as high-altitude platforms (HAPs) to relay wireless and optical communications, is due to finish its main research at the end of October.

The consortium behind the project will open York HAP Week, a conference from 23 to 27 October, which will showcase the applications of HAPs, as a springboard for future development in this new high-tech sector.

The CAPANINA Final Exhibition will open the conference by highlighting the achievements of the project, which received funding from the EU under its Broadband-for-All, FP6 programme.

The consortium, drawn from Europe and Japan, has demonstrated how the system could bring low-cost broadband connections to remote areas and even to high-speed trains. It promises data rates 2,000 times faster than via a traditional modem and 100 times faster than today's 'wired' ADSL broadband.

"The potential of the system is huge, with possible applications ranging from communications for disaster management and homeland security, to environmental monitoring "

Dr David GraceCAPANINA's Principal Scientific Officer Dr David Grace said: "The potential of the system is huge, with possible applications ranging from communications for disaster management and homeland security, to environmental monitoring and providing broadband for developing countries. So far, we have considered a variety of aerial platforms, including airships, balloons, solar-powered unmanned planes and normal aeroplanes -- the latter will probably be particularly suited to establish communications very swiftly in disaster zones."

The final experimental flight will use a US-built Unmanned Aerial Vehicle (UAV) and will take place in Arizona days before the York HAP Week conference at the city's historic King's Manor.

Following the CAPANINA event, a HAP Application Symposium led by Dr Jorge Pereira, of the Information Society and Media Directorate-General of the European Commission, will provide a forum for leading experts to illustrate the potential of HAPs to opinion formers and telecommunications providers.

Completing the week will be the first HAPCOS Workshop, featuring the work of leading researchers from around Europe. It will focus on wireless and optical communications from HAPs, as well as the critically important field of HAP vehicle development.

The Chair of HAPCOS, Tim Tozer, of the University of York's Department of Electronics, said: "There are a number of projects worldwide that are proving the technology and we want to convince the telecommunications and the wider community of its potential. We are particularly keen to attract aerial vehicle providers."

The CAPANINA and HAPCOS activities have helped to forge collaborative links with more than 25 countries, including many from Europe, as well as Japan, South Korea, China, Malaysia and USA. They are seeking to develop existing partnerships and forge new ones, with researchers, entrepreneurs, industry, governments as well as end users.

Dr David Grace | EurekAlert!
Further information:
http://www.york.ac.uk

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>