Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biometric identification for on-line and off-line signature recognition

18.07.2006
Day by day, natural and secure access to interconnected systems is becoming more and more important. There is also a strong need to verify identity of people in a fast, easy to use and user-friendly way.

In this context, handwritten signature is one of the most traditionally used and most socially accepted biometric identification ways. The PhD. Thesis of Juan Jose Igarza Ugaldea, from the University of the Basque Country, presents proposals for the two ways of handwritten signature biometric identification: on-line and off-line signature recognition.

To face this challenge, we have developed a wide data base, including enough signatures from several anonymous signers and skilled forgeries. The collected database is multimodal as it also includes fingerprints and voices from all users.

We have carried out a State of The Art in biometric recognition at different levels, starting from a wide vision of biometric recognition, evolving through the handwriting recognition and ending in both ways of handwritten signatures.

Our proposal for on-line signature recognition is a system based on processing local features (coordinates, velocities, accelerations, pressure and pen tilt) by using global features (center of mass of ink and principal inertia axes) as a reference system. We propose a simple scaling algorithm for signature time normalization that is applicable to every local feature. We have limited the amount of local features to feed the Hidden Markov Models to nine, in order to balance the required security level and the processing and storing capacities. Using six stated LR-HMMs we have obtained equal error rates similar to those observed in the state-of-the-art.

We have studied the reference system that is most suitable for the alignment of signatures and we have proposed the reference system located in the center of mass of ink using the principal inertia axes as orientation, after concluding that using signatures first points coordinates and slope as an alignment reference becomes a source of noise. The new reference system provides a better alignment, improving the equal error rate significantly, especially when using only coordinates.

Our proposals for off-line signature recognition consist in two systems based on using the LR-HMM technique, which is so useful for dynamic systems. The models are fed on spatially ordered point sequences and geometrical “false-dynamic” derivative features. The goal of those proposals is to extend LR-HMMs to the field of static or off-line signature processing using results provided by image connectivity analysis, which separates images in connected components known as “blobs”, each one made up of a cluster of adjacent pixels of the same nature.

Two different ways of generating models are discussed, depending on the way that blobs provided by the connectivity analysis are ordered. In the first proposed method, blobs are ordered according to their perimeter length. In the second proposal, the sorting criterion is based in the natural reading order. Results obtained in different experiments are presented, showing that the proposed methods provide verification rates similar to those observed during the study of the state-of-the-art. The models based on the second criterion are especially adequate for the Latin writing in which signatures have been written.

Irati Kortabitarte | alfa
Further information:
http://www.elhuyar.com
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=1008&hizk=I

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>