Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trust in global computing

13.07.2006
Access to distributed mobile resources by software agents of all types promises much for global computing. But it suffers from the same security and trust problems as the internet itself. Now new tools and protocols could lay the foundations for new and more secure high-level global computing.

But what does 'global computing' actually mean? The term refers to abstractions such as overlay computers, which involves access to distributed mobile resources by software agents that are not tied to a specific geographical or logical network location.

The key challenge for systems designers and programmers in such scenarios is that the software agents have to operate within environments about which they have little information, and where other agents are not necessarily trustworthy.

“Your piece of software, alone and out there in the wild, doesn’t know who to trust and who not!” says Vladimiro Sassone of the University of Southampton, coordinator of the MYTHS project financed under the European Commission’s Future and Emerging Technologies (FET) initiative of the IST programme. “That is why closed networks exist. In a global computing environment you do not have the reassurance of a closed network – you are dealing with agents that you cannot trust. That is why security issues are paramount.”

However, if the global market for internet services and applications is to progress, systems designers need to develop adequate security guarantees for agent-based transactions. Specific domains have to be able to limit access to selected agents only. These agents also need to protect themselves and their data from attacks while traversing potentially hostile environments, or executing remotely outside the control of their originating locations. In other words, you need to give your car keys with a guarantee that the car will arrive (eventually) on your doorstep.

MYTHS, which completed in March 2005, sought specifically to develop ‘type’-based theories of security for mobile and distributed systems, as a possible route to solving such problems. “Types are fundamentally important because they express a property of a particular program or piece of code which is unvarying,” says Sassone. “Their other important property is that they can be checked by inspecting the code rather than running the program, which may be too big and complex to run easily.”

Starting with the principle that strong typing underpins truly secure computing applications, the MYTHS team focused on the foundations of programming languages and the paradigms that allow static detection of security violations. The team aimed to develop type-based methods and tools that would allow computing systems and applications to be formally analysed for security weaknesses.

Their results can be divided into three main areas. In resource access-control, in other words how to control access by software agents to specific resources, “We developed complex type systems to control access to certain resources – the type determines that a specific piece of code would never be able to migrate to certain areas of your network,” says Sassone. “For example the code could migrate to online shop one because you trust that outlet, but not to online shop two.”

In crypto-protocol analysis, cryptographic protocols are delicate and vulnerable to attack. Many protocols may actually reveal the content of the code by disclosing the behaviour of the system. Such protocols have in the past not been sufficiently well-designed to resist the more sophisticated forms of attack.

“We designed a tool called PEAR,” says Sassone, “which analyses protocol specifications by assigning types to various messages. The tool enables systems programmers to analyse how secure a protocol is, and to see if it will leak information when under attack.”

In the area of data manipulation, the project team developed a brand-new programming language for the manipulation of XML documents, facilitating the examination and analysis of XML data. The language, CDuce, is an innovative XML-oriented functional language which is type-safe, efficient and offers new methods of working with XML documents. A compiler is also available under an open-source licence.

Sassone emphasises that the work within MYTHS dealt with the foundations, with computational theory, but that it can nevertheless underpin real tools. “Types can be implanted in programming languages, to deliver code that can work out there in the real world.”

The PEAR tool for analysing cryptographic protocols has been further improved since the close of the project, and has been presented at several EU fora. Another key project result, the new CDuce XML programming language, has generated a great deal of interest. So much so that the project researcher specialising in this area is now working full-time on its further development.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>