Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trust in global computing

13.07.2006
Access to distributed mobile resources by software agents of all types promises much for global computing. But it suffers from the same security and trust problems as the internet itself. Now new tools and protocols could lay the foundations for new and more secure high-level global computing.

But what does 'global computing' actually mean? The term refers to abstractions such as overlay computers, which involves access to distributed mobile resources by software agents that are not tied to a specific geographical or logical network location.

The key challenge for systems designers and programmers in such scenarios is that the software agents have to operate within environments about which they have little information, and where other agents are not necessarily trustworthy.

“Your piece of software, alone and out there in the wild, doesn’t know who to trust and who not!” says Vladimiro Sassone of the University of Southampton, coordinator of the MYTHS project financed under the European Commission’s Future and Emerging Technologies (FET) initiative of the IST programme. “That is why closed networks exist. In a global computing environment you do not have the reassurance of a closed network – you are dealing with agents that you cannot trust. That is why security issues are paramount.”

However, if the global market for internet services and applications is to progress, systems designers need to develop adequate security guarantees for agent-based transactions. Specific domains have to be able to limit access to selected agents only. These agents also need to protect themselves and their data from attacks while traversing potentially hostile environments, or executing remotely outside the control of their originating locations. In other words, you need to give your car keys with a guarantee that the car will arrive (eventually) on your doorstep.

MYTHS, which completed in March 2005, sought specifically to develop ‘type’-based theories of security for mobile and distributed systems, as a possible route to solving such problems. “Types are fundamentally important because they express a property of a particular program or piece of code which is unvarying,” says Sassone. “Their other important property is that they can be checked by inspecting the code rather than running the program, which may be too big and complex to run easily.”

Starting with the principle that strong typing underpins truly secure computing applications, the MYTHS team focused on the foundations of programming languages and the paradigms that allow static detection of security violations. The team aimed to develop type-based methods and tools that would allow computing systems and applications to be formally analysed for security weaknesses.

Their results can be divided into three main areas. In resource access-control, in other words how to control access by software agents to specific resources, “We developed complex type systems to control access to certain resources – the type determines that a specific piece of code would never be able to migrate to certain areas of your network,” says Sassone. “For example the code could migrate to online shop one because you trust that outlet, but not to online shop two.”

In crypto-protocol analysis, cryptographic protocols are delicate and vulnerable to attack. Many protocols may actually reveal the content of the code by disclosing the behaviour of the system. Such protocols have in the past not been sufficiently well-designed to resist the more sophisticated forms of attack.

“We designed a tool called PEAR,” says Sassone, “which analyses protocol specifications by assigning types to various messages. The tool enables systems programmers to analyse how secure a protocol is, and to see if it will leak information when under attack.”

In the area of data manipulation, the project team developed a brand-new programming language for the manipulation of XML documents, facilitating the examination and analysis of XML data. The language, CDuce, is an innovative XML-oriented functional language which is type-safe, efficient and offers new methods of working with XML documents. A compiler is also available under an open-source licence.

Sassone emphasises that the work within MYTHS dealt with the foundations, with computational theory, but that it can nevertheless underpin real tools. “Types can be implanted in programming languages, to deliver code that can work out there in the real world.”

The PEAR tool for analysing cryptographic protocols has been further improved since the close of the project, and has been presented at several EU fora. Another key project result, the new CDuce XML programming language, has generated a great deal of interest. So much so that the project researcher specialising in this area is now working full-time on its further development.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>