Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Researchers create a broadband light amplifier on a chip

Cornell researchers have created a broadband light amplifier on a silicon chip, a major breakthrough in the quest to create photonic microchips. In such microchips, beams of light traveling through microscopic waveguides will replace electric currents traveling through microscopic wires.

A team of researchers working with Alexander Gaeta, Cornell professor of applied and engineering physics, and Michal Lipson, assistant professor of electrical and computer engineering, used the Cornell NanoScale Facility to make the devices. They reported their results in the June 22 issue of the journal Nature.

Gaeta Group/Cornell University

In four-wave mixing, two photons at a pump wavelength are converted into two new photons, one at the signal wavelength and one at a wavelength equal to twice the pump wavelength minus the signal wavelength. The new signal photons combine with the originals to create an amplified signal. The idler photons are a copy of the signal at a new wavelength, so the system can be used to convert a signal from one communications channel to another.

The amplifier uses a phenomenon known as four-wave mixing, in which a signal to be amplified is "pumped" by another light source inside a very narrow waveguide. The waveguide is a channel only 300 x 550 nanometers (nm = a billionth of a meter, about the length of three atoms in a row) wide, smaller than the wavelength of the infrared light traveling through it. The photons of light in the pump and signal beams are tightly confined, allowing for transfer of energy between the two beams.

The advantage this scheme offers over previous methods of light amplification is that it works over a fairly broad range of wavelengths. Photonic circuits are expected to find their first applications as repeaters and routers for fiber-optic communications, where several different wavelengths are sent over a single fiber at the same time. The new broadband device makes it possible to amplify the multiplexed traffic all at once.

The process also creates a duplicate signal at a different wavelength, so the devices could be used to convert a signal from one wavelength to another.

Although four-wave mixing amplifiers have been made with optical fibers, such devices are tens of meters long. Researchers are working to create photonic circuits on silicon because silicon devices can be manufactured cheaply, and photonics on silicon can easily be combined with electronics on the same chip.

"A number of groups are trying to develop optical amplifiers that are silicon compatible," Gaeta said. "One of the reasons we were successful is that Michal Lipson's group has a lot of experience in making photonic devices on silicon." That experience, plus the manufacturing tools available at the Cornell NanoScale Facility, made it possible to create waveguides with the precise dimensions needed. The waveguides are silicon channels surrounded by silicon dioxide.

Computer simulations by the Cornell team predicted that a waveguide with a cross section of 300 x 600 nm would support four-wave mixing, while neither a slightly smaller one -- 200 x 400 nm -- nor a larger one -- 1,000 x 1,500 nm -- would. When Lipson's Cornell Nanophotonics Group built the devices, those numbers checked out, with best results obtained with a channel measuring 300 x 550 nm.

The devices were tested with infrared light at wavelengths near 1,555 nm, the light used in most fiber-optic communications. Amplification took place over a range of wavelengths 28 nm wide, from 1,512 to 1,535 nm. Longer waveguides gave greater amplification in a range from 1,525 to 1,540 nm. The researchers predict that even better performance can be obtained by refining the process.

They also predict that other applications of four-wave mixing already demonstrated in optical fibers will now be possible in silicon, including all-optical switching, optical signal regeneration and optical sources for quantum computing.

The work was supported by the Cornell Center for Nanoscale Systems. The Center for Nanoscale Systems and the Cornell NanoScale Facility are funded by the National Science Foundation and the New York State Office for Science, Technology and Academic Research (NYSTAR).

Bill Steele | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>