Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputers To Transform Science

07.06.2006


New insights into the structure of space and time, climate modeling, and the design of novel drugs, are but a few of the many research areas that will be transformed by the installation of three supercomputers at the University of Bristol.



At peak performance the multi-million pound high performance computers (HPCs) will carry out over 13 trillion calculations per second. That is equivalent to the entire population of the world working simultaneously on hand-held calculators for about three hours.

“This initiative puts Bristol at the forefront of high performance computing”, said Professor David May, Head of Computer Science. “The HPC impact will be enormous – right across all disciplines – turning data into knowledge. It will influence both research and teaching. Universities that understand this will be the most competitive in the 21st century”.


The University today announced the award of the contract to install the computers to a consortium led by ClusterVision, working with IBM and ClearSpeed Technology. The largest of the three HPCs will be one of the fastest University research computers in the UK, and is expected to be one of the top 100 computers of its type in the world.

Dr David Newbold, physicist, explained how the new HPC cluster will allow the University’s physicists to be amongst the first to examine results from the Large Hadron Collider, the world’s largest particle collider which is set to provide new insights into the structure of space and time and the origin of mass.

Professor Paul Valdes, climatologist, said: “This is an incredibly exciting development. These HPCs will allow us to develop a new generation of numerical models that have a much more sophisticated representation of the climate system. This will give everyone much greater confidence in the regional predictions of future climate change.”

Professor Steve Wiggins, Head of Mathematics and a co-instigator of the project, stated that “HPC has ascended to a new level of importance. Any university that aspires to be world-class must have this basic research infrastructure. In future HPC will be an indispensable tool in every good researchers’ toolbox. The University of Bristol is leading the way.”

ClusterVision will supply, deliver, install the hardware and support the three clusters which will all run the ClusterVisionOSTM cluster suite of management and monitoring tools. Access to the computers will be available across the University’s dedicated campus research network.

“The solution put forward by ClusterVision, IBM and ClearSpeed was the best overall and in line with the University’s research and development requirements,” said Dr Ian Stewart, who co-ordinated the procurement at Bristol. “In addition to firmly establishing the University as one of the top High Performance Computing centers worldwide, the access to new innovative technology provided by IBM and ClearSpeed will maintain the University’s leading position in delivering groundbreaking research.”

Cherry Lewis | alfa
Further information:
http://www.bris.ac.uk/news/2006/987.html

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>