Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Robots manipulating animal behaviour

08.05.2006


A pet dog sits on command, but nobody expects an insect to follow human instructions. So it may come as a surprise to learn that researchers recently succeeded in controlling cockroaches with tiny mobile robots. The results hint at a future where we can interact and communicate with many different kinds of animal.



Little larger than a thumbnail, the cubic insect-like robots or ‘insbots’ are technological marvels. Developed under the European Commission’s Future and Emerging Technologies (FET) initiative of the IST programme as the project Leurre, the insbots are fitted with two motors, wheels, a rechargeable battery, several computer processors, a light-sensing camera and an array of infrared proximity sensors.

When dropped into a small experimental area with a maze of curved walls, the robots move, turn and stop. They can navigate their way safely by avoiding the walls, obstacles or each other, follow the walls, congregate around a lamp beam or even line up. When placed in the same area with cockroaches, the robots quickly adapt their behaviour by mimicking the animals’ movements. Coated with pheromones taken from roaches, the infiltrator robots even fool the insects into thinking they are real creatures.


The roach pheromones – a blend of molecules developed by the project partner from the Université de Rennes I, France – enable various forms of communication, including recognition and attraction. For example, when a roach detects another roach, it may approach it, move away or stop. Cockroaches were chosen here because their pheromones are better understood than those found on other gregarious insects, such as ants.

According to coordinator Jean-Louis Deneubourg, from the Université Libre de Bruxelles, the project had its origins in collective intelligence and behaviour in animal society, as well as the tradition of using artificial agents to test theories about animals. “Robots have already been used to interact with some animals, such as bees. But they cannot react to the animals’ response,” he says. “In our project, the autonomous insbots call on specially developed algorithms to react to signals and responses from individual insects. This results in a chain action or reaction between the artificial and natural agents – a two-way interaction that is unique and very promising for sciences such as biology and robotics.”

Not only did the insbots act like and interact with the insects, they even succeeded in changing the roaches’ behaviour. For example, the darkness-loving insects followed their artificial cousins towards bright beams of light and congregated there. This process took up to two hours, but it showed how humans might soon be able to manipulate the behaviour of a whole colony of insects. A trick that would delight pest-controllers the world over!

Two side-projects under Leurre also looked at sheep and chickens, animals that are happy to follow their ‘leaders’ – unlike the cockroaches, whose collective behaviour is essentially ‘democratic’. The researchers collected data and developed mathematical models describing the collective behaviour of sheep, such as clustering together in a field. These models have yet to be taken up in a follow-on project, but are scientifically valuable. Adds Deneubourg, “They are a great way of exploring the importance of leadership or collective behaviour in animals, paving the way for people to control animals and even colonies of robots.”

Asked why people would want to influence animal behaviour, Deneubourg offers several answers. Firstly, by changing the way animals behave or inducing collective behaviour, scientists can learn much about animal communications and information processing. Secondly, the ability to create ‘mixed systems’, where artificial agents interact with natural ones, is a long-held dream for many in the scientific community – including those working on nanotechnology. Moreover, these systems are in keeping with emerging European research such as collective robotics and FET-funded projects such as Swarmbots.

“We believe farming in Europe can only survive if is associated with high technology,” he adds, pointing to a potential increase in competitiveness and a decrease in costs. “A robot interacting with animals, even if it is not mobile, could be used for numerous tasks, such as herding or milking. Our project demonstrates that the fields of biology and IT can work together more closely in future.”

Though the project has officially ended, some of the partners are continuing to refine the behaviour models they developed. The main research results are also being published in leading IT and biology journals. “Time constraints prevented us from exploring all the new and interesting research paths that opened during the project,” says the project coordinator. “But we succeeded in our main goal – showing that an artificial agent such as a robot can modify the collective behaviour of natural agents, in this case cockroaches, in a mixed community.”

Tara Morris | alfa
Further information:
http://istresults.cordis.europa.eu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/81744
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>