Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Binghamton University research links digital images and cameras

20.04.2006


Child pornographers will soon have a harder time escaping prosecution thanks to a stunning new technology in development at Binghamton University, State University of New York, that can reliably link digital images to the camera with which they were taken, in much the same way that tell-tale scratches are used by forensic examiners to link bullets to the gun that fired them.



"The defense in these kind of cases would often be that the images were not taken by this person’s camera or that the images are not of real children," said Jessica Fridrich, associate professor of electrical and computer engineering. "Sometimes child pornographers will even cut and paste an image of an adult’s head on the image of a child to try to avoid prosecution.

"But if it can be shown that the original images were taken by the person’s cell phone or camera, it becomes a much stronger case than if you just have a bunch of digital images that we all know are notoriously easy to manipulate."


Fridrich and two members of her Binghamton University research team – Jan Lukas and Miroslav Goljan – are coinventors of the new technique, which can also be used to detect forged images.

The three have applied for two patents related to their technique, which provides the most robust strategy for digital image forgery detection to date, even as it improves significantly on the accuracy of other approaches.

Fridrich’s technique is rooted in the discovery by her research group of this simple fact: Every original digital picture is overlaid by a weak noise-like pattern of pixel-to-pixel non-uniformity.

Although these patterns are invisible to the human eye, the unique reference pattern or "fingerprint" of any camera can be electronically extracted by analyzing a number of images taken by a single camera.

That means that as long as examiners have either the camera that took the image or multiple images they know were taken by the same camera, an algorithm developed by Fridrich and her co-inventors to extract and define the camera’s unique pattern of pixel-to-pixel non-uniformity can be used to provide important information about the origins and authenticity of a single image.

The limitation of the technique is that it requires either the camera or multiple images taken by the same camera, and isn’t informative if only a single image is available for analysis.

Like actual fingerprints, the digital "noise" in original images is stochastic in nature – that is, it contains random variables – which are inevitably created during the manufacturing process of the camera and its sensors. This virtually ensures that the noise imposed on the digital images from any particular camera will be consistent from one image to the next, even while it is distinctly different.

In preliminary tests, Fridrich’s lab analyzed 2,700 pictures taken by nine digital cameras and with 100 percent accuracy linked individual images with the camera that took them.

Fridrich, who specializes in all aspects of information hiding in digital imagery, including watermarking for authentication, tamper detection, self-embedding, robust watermarking, steganography and steganalysis, as well as forensic analysis of digital images, says it is the absence of the expected digital fingerprint in any portion of an image that provides the most conclusive evidence of image tampering.

In the near future, Fridrich’s technique promises to find application in the analysis of scanned and video imagery. There it can be expected to make life more difficult for forgers, or any others whose criminal pursuits rely on the misuse of digital images.

"We already know law enforcement wants to be able to use this," Fridrich said. "What we have right now is a research tool; it’s a raw technology that we will continue to improve."

Gail Glover | EurekAlert!
Further information:
http://www.binghamton.edu

More articles from Information Technology:

nachricht NASA CubeSat to test miniaturized weather satellite technology
10.11.2017 | NASA/Goddard Space Flight Center

nachricht New approach uses light instead of robots to assemble electronic components
08.11.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>