Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is your pet infected with a computer virus?

16.03.2006


Digital vermin poses a real threat to RFID tags


Is your pet infected with a computer virus?

Has your dog or cat contracted a computer virus? It’s not impossible. These days, large numbers of pets and livestock have a small chip implanted under the skin so that they can be identified if they stray or turn out to be infected with a disease. As these chips only have a limited memory capacity, it was widely assumed that they could not become infected with a computer virus. However, researchers at VU Amsterdam have now discovered that this is a real possibility. Fortunately they have also come up with a number of adequate countermeasures.

The chips in question are called Radio Frequency Identification Tags, or RFID tags. These are small, relatively cheap microchips, which can be used to tag supermarket products, for example. They can also be implanted into pets or livestock. The same chips are used in public transport chip cards, ski passes or on baggage labels at airports.



Thanks to these tags, we will soon be able to do our shopping without having to queue at the tills. An RFID scanner placed at the exit will transmit a radio wave that will be received by all the RFID tags in your shopping trolley. The tags identify themselves, the scanner registers the products you have bought and the total bill can be debited directly from your bank account. Walmart, the largest supermarket chain in the world, expects to make a total switch to products with RFID chips within the next few years.

But these tags are apparently more vulnerable than was first thought. PhD candidate Melanie Rieback and her supervisor Prof. Andrew Tanenbaum have found a way of placing a computer virus onto a RFID tag. This was previously considered impossible on account of the limited memory capacity of the tags. Melanie Rieback will be giving a demonstration of her discovery on Wednesday 15 March at the annual IEEE Conference on Pervasive Computing and Communications in Pisa.

Digital plague

These chips may be small, but just one infected RFID tag is capable of disrupting an entire system with disastrous consequences. Take, for example, the airport at Las Vegas, which handles two million items of luggage per month. As from May 2006, RFID tags will be attached to cases to speed up the baggage handling process. If someone intentionally attaches an infected RFID tag to his case, the entire system will be thrown into disarray. As soon as the case is scanned, the infected tag will be able to invade the airport’s central baggage database and all cases subsequently checked in will also become infected. On arrival at other airports, these cases will be scanned again and within 24 hours, hundreds of airports throughout the world could be infected. The perfect solution for smugglers and terrorists wanting to send suspicious luggage across the world without being noticed.

Countermeasures

Fortunately, the threat of infection can be countered using standard measures. Rieback stresses that developers must check their RFID systems, and implement safety procedures and secure programme technology. Although these countermeasures will curb the threat posed by RFID viruses, extra time, money and effort will need to be spent on implementing them. It is therefore imperative that RFID system developers and users check the security of their systems now, before they are put to large-scale use.

Tanja Terpstra | alfa
Further information:
http://www.rfidvirus.org

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>