Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Computers Be Aware Of Their Surroundings?

09.03.2006


Electronics and computing engineers from the University of Ulster have teamed up with neuroscientists, physicists and biologists from across Europe to investigate the incorporation of the senses we humans take for granted into intelligent computer systems of the future.



The multi-disciplinary team concentrated on attempting to replicate in silicon the biological brain’s ability to capture data from the senses of touch and sight. In biological life forms, the brain can combine information from different senses to create a comprehensive representation of its surroundings.

For example, sight can identify a kiwi fruit but touch is required to tell if the fruit is ripe, unripe or over-ripe.


Professor Martin McGinnity, Professor of Intelligent Systems Engineering and Director of the Intelligent Systems Engineering Laboratory (ISEL) at the University’s Magee campus, said: “The objective was to study sensory fusion in biological systems and then translate that knowledge into the creation of intelligent computational machines”.

Professor McGinnity was the co-ordinator of the EU’s Future and Emerging Technologies-funded SENSEMAKER project which has now been completed. Other partners in the project included academics from Trinity College, Dublin, two CNRS laboratories in France and the University of Heidelberg in Germany.

He added: “The ultimate aim is to create machines which can capture information through sensory perception, process it in a way similar to the brain and then act intelligently on that information. The research will have practical application in a wide range of areas including robotics and industrial automation.

“The results of the research project are very promising - this is a very complex problem area but we have made some progress. We were able to create a theoretical model on how aspects of the process work and also to produce a demonstration system in hardware and software that merged vision and touch – albeit at a very basic level compared to that of living forms. We would hope that in the future we could create models that are more faithful to biology. Once we can get the models right we may be able to implement better, more realistic systems.”

He said intelligent systems need to adapt and react autonomously to their environment without reprogramming; they need to be able to react to changing circumstances in a manner that humans would describe as intelligent; for that they need a perception system that enables them to be aware of their surroundings.

But a greater understanding of biological sensory fusion, and how to implement it in artificial systems, could do potentially much more.

“This type of research teaches us a lot about how we can translate the principles of living biological systems into artificial computer systems; while the primary focus is to create intelligent computational systems, this field of research may also lead to new ways of treating people with sensory-related disabilities with more advanced prosthetics” said Professor McGinnity.

Two other projects will carry aspects of the scientists’ work further. The FACETS project, also funded by the EU thorough its Future Emerging Technologies programme, will continue to explore machine perception, focusing on vision. Meanwhile ISEL at the Magee Campus is actively engaged in a major proposal to create a Centre of Excellence in Intelligent Systems. The Centre will progress a range of research problems related to the creation of intelligent systems, including sensory fusion, learning, adaptation, self-organisation, the implementation of large-scale biological neural sub-systems in hardware and distributed computational intelligence.

David Young | alfa
Further information:
http://www.ulster.ac.uk/news/releases/2006/2099.html

More articles from Information Technology:

nachricht Defining the backbone of future mobile internet access
21.07.2017 | IHP - Leibniz-Institut für innovative Mikroelektronik

nachricht Researchers create new technique for manipulating polarization of terahertz radiation
20.07.2017 | Brown University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>