Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Can Computers Be Aware Of Their Surroundings?

09.03.2006


Electronics and computing engineers from the University of Ulster have teamed up with neuroscientists, physicists and biologists from across Europe to investigate the incorporation of the senses we humans take for granted into intelligent computer systems of the future.



The multi-disciplinary team concentrated on attempting to replicate in silicon the biological brain’s ability to capture data from the senses of touch and sight. In biological life forms, the brain can combine information from different senses to create a comprehensive representation of its surroundings.

For example, sight can identify a kiwi fruit but touch is required to tell if the fruit is ripe, unripe or over-ripe.


Professor Martin McGinnity, Professor of Intelligent Systems Engineering and Director of the Intelligent Systems Engineering Laboratory (ISEL) at the University’s Magee campus, said: “The objective was to study sensory fusion in biological systems and then translate that knowledge into the creation of intelligent computational machines”.

Professor McGinnity was the co-ordinator of the EU’s Future and Emerging Technologies-funded SENSEMAKER project which has now been completed. Other partners in the project included academics from Trinity College, Dublin, two CNRS laboratories in France and the University of Heidelberg in Germany.

He added: “The ultimate aim is to create machines which can capture information through sensory perception, process it in a way similar to the brain and then act intelligently on that information. The research will have practical application in a wide range of areas including robotics and industrial automation.

“The results of the research project are very promising - this is a very complex problem area but we have made some progress. We were able to create a theoretical model on how aspects of the process work and also to produce a demonstration system in hardware and software that merged vision and touch – albeit at a very basic level compared to that of living forms. We would hope that in the future we could create models that are more faithful to biology. Once we can get the models right we may be able to implement better, more realistic systems.”

He said intelligent systems need to adapt and react autonomously to their environment without reprogramming; they need to be able to react to changing circumstances in a manner that humans would describe as intelligent; for that they need a perception system that enables them to be aware of their surroundings.

But a greater understanding of biological sensory fusion, and how to implement it in artificial systems, could do potentially much more.

“This type of research teaches us a lot about how we can translate the principles of living biological systems into artificial computer systems; while the primary focus is to create intelligent computational systems, this field of research may also lead to new ways of treating people with sensory-related disabilities with more advanced prosthetics” said Professor McGinnity.

Two other projects will carry aspects of the scientists’ work further. The FACETS project, also funded by the EU thorough its Future Emerging Technologies programme, will continue to explore machine perception, focusing on vision. Meanwhile ISEL at the Magee Campus is actively engaged in a major proposal to create a Centre of Excellence in Intelligent Systems. The Centre will progress a range of research problems related to the creation of intelligent systems, including sensory fusion, learning, adaptation, self-organisation, the implementation of large-scale biological neural sub-systems in hardware and distributed computational intelligence.

David Young | alfa
Further information:
http://www.ulster.ac.uk/news/releases/2006/2099.html

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>