Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mini robots to undertake major tasks?


From cell manipulation to micro assembly, micro robots devised by an international team of researchers offer a glimpse of the future.

The MICRON project team, led by the Institute for Process Control and Robotics (IPR), Karlsruhe, Germany, brought together eight international partners. Funded under the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, MICRON set out to build a total of five to ten micro robots, just cubic centimetres in size.

“Each one would measure about 1.5cm by 3 cm,” says IPR´s Joerg Seyfried. “They were designed to be complete robots, with different kinds of actuators for gripping, cell manipulation, and so on. Each one would be wireless, with lots of electronics on board, and an infrared control system – rather like a TV remote, but two-way in this case. They would be able to cooperate together on a range of tasks.”

Building the robots involved developing many custom applications, he adds. “One of these was the wireless powering system, the ‘power floor’, which allows the robot to get energy from its surroundings,” he says. “It uses a coil system to transmit the electricity through the air.”

The robots were designed as part of a networked system: “The individual robots are not that intelligent,” explains Seyfried. “They don’t, for example, know where they are, although they know which direction they are moving in. We developed a special positioning system, so that we know where each robot is. It views them from 40 to 50 cm above. They are controlled by a central robot control system, with several networked computers for planning and commands – this could theoretically control many robots.”

The hardest part of the project was “getting the hardware integrated and running – our goal was to have five robots operational, but this couldn’t be done in our three-year timeframe owing to the extreme complexity of the task,” he says.

Nevertheless, the one fully functional robot that the project did achieve could be tested in three different scenarios. “The first was a medical or biological application, in which the robot was handling biological cells, injecting liquid into them,” Seyfried explains. “The second scenario was micro-assembly, in which the robot soldered tiny parts. The final scenario looked at atomic force, with the robot mounting atomic force and doing experiments on it.”

The results were encouraging. “Our experiments showed that the cell injection is entirely feasible, as is the micro soldering,” says Seyfried. Although the MICRON robots are clearly not a mass market product, commercialisation – though still far off – would be perfectly possible, he believes: “Robots with this sort of capability, and mobility, would be perfectly suited to lab work, such as the micro assembly of prototypes. Tasks such as cell injection could be performed on a mass scale.”

With MICRON now having run its course, the project team is currently working on the project reports and evaluation. “What’s missing is the integration work, and this is what we will try to do next within the [also FET-funded] I-Swarm project,” says Seyfried. “This will build on MICRON to produce robots with a ‘swarm’ intelligence – that is, with limited capabilities, but able to communicate with each other.”

The tiny robots of science fiction tales might be smarter, but, as Seyfried points out, “We’re working on the smallest size range currently being worked on by a few other groups worldwide – like MIT. On a European level, MICRON is unique.”

Tara Morris | alfa
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>