Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mini robots to undertake major tasks?

24.02.2006


From cell manipulation to micro assembly, micro robots devised by an international team of researchers offer a glimpse of the future.



The MICRON project team, led by the Institute for Process Control and Robotics (IPR), Karlsruhe, Germany, brought together eight international partners. Funded under the European Commission’s FET (Future and Emerging Technologies) initiative of the IST programme, MICRON set out to build a total of five to ten micro robots, just cubic centimetres in size.

“Each one would measure about 1.5cm by 3 cm,” says IPR´s Joerg Seyfried. “They were designed to be complete robots, with different kinds of actuators for gripping, cell manipulation, and so on. Each one would be wireless, with lots of electronics on board, and an infrared control system – rather like a TV remote, but two-way in this case. They would be able to cooperate together on a range of tasks.”


Building the robots involved developing many custom applications, he adds. “One of these was the wireless powering system, the ‘power floor’, which allows the robot to get energy from its surroundings,” he says. “It uses a coil system to transmit the electricity through the air.”

The robots were designed as part of a networked system: “The individual robots are not that intelligent,” explains Seyfried. “They don’t, for example, know where they are, although they know which direction they are moving in. We developed a special positioning system, so that we know where each robot is. It views them from 40 to 50 cm above. They are controlled by a central robot control system, with several networked computers for planning and commands – this could theoretically control many robots.”

The hardest part of the project was “getting the hardware integrated and running – our goal was to have five robots operational, but this couldn’t be done in our three-year timeframe owing to the extreme complexity of the task,” he says.

Nevertheless, the one fully functional robot that the project did achieve could be tested in three different scenarios. “The first was a medical or biological application, in which the robot was handling biological cells, injecting liquid into them,” Seyfried explains. “The second scenario was micro-assembly, in which the robot soldered tiny parts. The final scenario looked at atomic force, with the robot mounting atomic force and doing experiments on it.”

The results were encouraging. “Our experiments showed that the cell injection is entirely feasible, as is the micro soldering,” says Seyfried. Although the MICRON robots are clearly not a mass market product, commercialisation – though still far off – would be perfectly possible, he believes: “Robots with this sort of capability, and mobility, would be perfectly suited to lab work, such as the micro assembly of prototypes. Tasks such as cell injection could be performed on a mass scale.”

With MICRON now having run its course, the project team is currently working on the project reports and evaluation. “What’s missing is the integration work, and this is what we will try to do next within the [also FET-funded] I-Swarm project,” says Seyfried. “This will build on MICRON to produce robots with a ‘swarm’ intelligence – that is, with limited capabilities, but able to communicate with each other.”

The tiny robots of science fiction tales might be smarter, but, as Seyfried points out, “We’re working on the smallest size range currently being worked on by a few other groups worldwide – like MIT. On a European level, MICRON is unique.”

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/80703

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Diamond Lenses and Space Lasers at Photonics West

15.12.2017 | Trade Fair News

A better way to weigh millions of solitary stars

15.12.2017 | Physics and Astronomy

New epidemic management system combats monkeypox outbreak in Nigeria

15.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>