Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to help computers recognize patterns

25.01.2006


Researchers at Ohio State University have found a way to boost the development of pattern recognition software by taking a different approach from that used by most experts in the field.



This work may impact research in areas as diverse as genetics, economics, climate modeling, and neuroscience.

Aleix Martinez, assistant professor of electrical and computer engineering at Ohio State, explained what all these areas of research have in common: pattern recognition.


He designs computer algorithms to replicate human vision, so he studies the patterns in shape and color that help us recognize objects, from apples to friendly faces. But much of today’s research in other areas comes down to finding patterns in data -- identifying the common factors among people who develop a certain disease, for example.

In fact, the majority of pattern recognition algorithms in science and engineering today are derived from the same basic equation and employ the same methods, collectively called linear feature extraction, Martinez said.

But the typical methods don’t always give researchers the answers they want. That’s why Martinez has developed a fast and easy test to find out in advance which algorithms are best in a particular circumstance.

"You can spend hours or weeks exploring a particular method, just to find out that it doesn’t work," he said. "Or you could use our test and find out right away if you shouldn’t waste your time with a particular approach."

The research grew out of the frustration that Martinez and his colleagues felt in the university’s Computational Biology and Cognitive Science Laboratory, when linear algorithms worked well in some applications, but not others.

In the journal IEEE Transactions on Pattern Analysis and Machine Intelligence, he and doctoral student Manil Zhu described the test they developed, which rates how well a particular pattern recognition algorithm will work for a given application.

Along the way, they discovered what happens to scientific data when researchers use a less-than-ideal algorithm: They don’t necessarily get the wrong answer, but they do get unnecessary information along with the answer, which adds to the problem.

He gave an example.

"Let’s say you are trying to understand why some patients have a disease. And you have certain variables, which could be the type of food they eat, what they drink, amount of exercise they take, and where they live. And you want to find out which variables are most important to their developing that disease. You may run an algorithm and find that two variables -- say, the amount of exercise and where they live -- most influence whether they get the disease. But it may turn out that one of those variables is not necessary. So your answer isn’t totally wrong, but a smaller set of variables would have worked better," he said. "The problem is that such errors may contribute to the incorrect classification of future observations."

Martinez and Zhu tested machine vision algorithms using two databases, one of objects such as apples and pears, and another database of faces with different expressions. The two tasks -- sorting objects and identifying expressions -- are sufficiently different that an algorithm could potentially be good at doing one but not at the other.

The test rates algorithms on a scale from zero to one. The closer the score is to zero, the better the algorithm.

The test worked: An algorithm that received a score of 0.2 for sorting faces was right 98 percent of the time. That same algorithm scored 0.34 for sorting objects, and was right only 70 percent of the time when performing that task. Another algorithm scored 0.68 and sorted objects correctly only 33 percent of the time.

"So a score like 0.68 means ’don’t waste your time,’" Martinez said. "You don’t have to go to the trouble to run it and find out that it’s wrong two-thirds of the time."

He hopes that researchers across a broad range of disciplines will try out this new test. His team has already started using it to optimize the algorithms they use to study language and cancer genetics.

This work was sponsored by the National Institutes of Health.

Aleix Martinez | EurekAlert!
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>