Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new way to help computers recognize patterns

25.01.2006


Researchers at Ohio State University have found a way to boost the development of pattern recognition software by taking a different approach from that used by most experts in the field.



This work may impact research in areas as diverse as genetics, economics, climate modeling, and neuroscience.

Aleix Martinez, assistant professor of electrical and computer engineering at Ohio State, explained what all these areas of research have in common: pattern recognition.


He designs computer algorithms to replicate human vision, so he studies the patterns in shape and color that help us recognize objects, from apples to friendly faces. But much of today’s research in other areas comes down to finding patterns in data -- identifying the common factors among people who develop a certain disease, for example.

In fact, the majority of pattern recognition algorithms in science and engineering today are derived from the same basic equation and employ the same methods, collectively called linear feature extraction, Martinez said.

But the typical methods don’t always give researchers the answers they want. That’s why Martinez has developed a fast and easy test to find out in advance which algorithms are best in a particular circumstance.

"You can spend hours or weeks exploring a particular method, just to find out that it doesn’t work," he said. "Or you could use our test and find out right away if you shouldn’t waste your time with a particular approach."

The research grew out of the frustration that Martinez and his colleagues felt in the university’s Computational Biology and Cognitive Science Laboratory, when linear algorithms worked well in some applications, but not others.

In the journal IEEE Transactions on Pattern Analysis and Machine Intelligence, he and doctoral student Manil Zhu described the test they developed, which rates how well a particular pattern recognition algorithm will work for a given application.

Along the way, they discovered what happens to scientific data when researchers use a less-than-ideal algorithm: They don’t necessarily get the wrong answer, but they do get unnecessary information along with the answer, which adds to the problem.

He gave an example.

"Let’s say you are trying to understand why some patients have a disease. And you have certain variables, which could be the type of food they eat, what they drink, amount of exercise they take, and where they live. And you want to find out which variables are most important to their developing that disease. You may run an algorithm and find that two variables -- say, the amount of exercise and where they live -- most influence whether they get the disease. But it may turn out that one of those variables is not necessary. So your answer isn’t totally wrong, but a smaller set of variables would have worked better," he said. "The problem is that such errors may contribute to the incorrect classification of future observations."

Martinez and Zhu tested machine vision algorithms using two databases, one of objects such as apples and pears, and another database of faces with different expressions. The two tasks -- sorting objects and identifying expressions -- are sufficiently different that an algorithm could potentially be good at doing one but not at the other.

The test rates algorithms on a scale from zero to one. The closer the score is to zero, the better the algorithm.

The test worked: An algorithm that received a score of 0.2 for sorting faces was right 98 percent of the time. That same algorithm scored 0.34 for sorting objects, and was right only 70 percent of the time when performing that task. Another algorithm scored 0.68 and sorted objects correctly only 33 percent of the time.

"So a score like 0.68 means ’don’t waste your time,’" Martinez said. "You don’t have to go to the trouble to run it and find out that it’s wrong two-thirds of the time."

He hopes that researchers across a broad range of disciplines will try out this new test. His team has already started using it to optimize the algorithms they use to study language and cancer genetics.

This work was sponsored by the National Institutes of Health.

Aleix Martinez | EurekAlert!
Further information:
http://www.osu.edu

More articles from Information Technology:

nachricht Efficient time synchronization of sensor networks by means of time series analysis
24.01.2017 | Alpen-Adria-Universität Klagenfurt

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>