Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Image processing for applications in artificial vision

17.01.2006


For a robot to identify objects in a particular image, it is first necessary that it can “see” them. With this aim, in artificial vision, edge detectors are normally used, i.e. computer programmes that delimit the objects in an image and define the limits between them and the background, and between the different objects themselves. Edurne Barrenechea Tartas from Pamplona has designed one of these edge detectors and, after trials with a wide-ranging set of photographs, she has shown that the results with her design are an improvement on those obtained with other detectors commonly used to date.
These results have been published in her PhD thesis, Image processing with interval-valued fuzzy sets. Edge detection. Contrast, which she recently defended at the Public University of Navarra.

Of medical and industrial interest


The operation of the designed edge detector is simple. A picture is taken, this image put through the grey scale and then introduced into the detector which, after analysing the image, produces a final picture where all the background is in black and the pixels making up the edges appear as white dots.

Once the shapes of the objects are identified, this image can be analysed by an expert system which applies rules, for example, to determine if an object is totally square, if it has a continuity line of more than x pixels or if it has a closed angle meaning- all meaning, for example, that the ensemble is correct.

These systems can have industrial applications as well as medical ones, amongst others, given that the designed shape detector works for all kinds of images. So, for example, this detector can be adapted so that the robot can detect the doors of a particular building.

In the medical field, the research team is working on a state-wide project to design and develop a reliable system for the detection of skin melanomas, thus reducing the work of the doctor by a very significant amount. With this system, using the image of a particular mole or mark on the skin, the edges are traced and compared with the progress of its shape, for example, after three months. If, in this period, the edge has been displaced by 3 millimetres, it is possible that a melanoma is involved. Monitoring this evolution by a person is very labour-intensive and costly but not for a computer system.

A new technique

The novelty of the edge detector created by Ms Edurne Barrenechea is that it is the first one based on interval-valued fuzzy sets, given that those undertaken to date have been based on traditional techniques or on fuzzy sets - but not on interval-valued fuzzy sets.

Normally, the objective of the techniques used for the edge detection of objects is the location of points where there is a variation of intensity of greys. With the technique used by Edurne Barrenechea, the edge of the objects making up an image is a set composed of pixels of the image that are associated with a sufficiently important change with respect to the intensity of grey of their neighbours. In this way, those pixels have a change of intensity associated with them with respect to their neighbours that is either null or insignificantly small, do not form part of the edge.

Thus, an edge is a set of pixels in which each pixel has an associated numerical value. This value tells us of the local variations of intensity in the area surrounding the pixel in question. In concrete, with the edge detector created by Ms Edurne Barrenechea, each element of a set has an associated interval which indicates the jump in intensity that exists between a pixel and its neighbours.

The theory of fuzzy sets has been used a lot in image processing techniques for the following reasons: fuzziness is an attribute of nature which is reflected in images; images are two-dimensional projections of a three-dimensional world and, thus, involve a loss of information; the levels of grey are considered to be imprecise constants; and, moreover, in nature, many of the definitions such as image and edge limits are vague.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&hizk=I&Berri_Kod=855
http://www.elhuyar.com

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>