Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barcode for explosives

04.03.2005


Experts encounter a serious problem when studying the crime scene after an explosion. They can establish to a high degree of probability the type and power of the device used by terrorists and with what explosive substance it was filled with. However, they are usually unable to answer the most important question as to where and when the explosive itself was made: TNT is still TNT, regardless of the where and when it was produced.



Specialists from the Semenov Institute of Chemical Physics and their colleagues from several defense enterprises have developed special encoding additives. If these additives are introduced to the composition of the explosive, the site of the explosion will leave a kind of fingerprint, with which the explosive could be identified and the path of its legal movements could be traced; this would give the investigation into an incident of this kind a thread to uncover the supply channels of the terrorists. This most important work was fulfilled by the researchers in the framework of ISTC Project # 1292.

It is very difficult to make such encoding additives specifically for explosives; the requirements are too strict. On one hand they have to be completely harmless to the product (the explosive) and to the environment in their own right. On the other hand the explosion must not damage the encoding additive. And of course they all have to be individual, to ensure the reliability of the identification process. No dirt or impurities should be able to hinder the recognition of markers or to confuse them.


However, these complications proved no problem to the scientists from the Institute of Chemical Physics. The encoding additives they have proposed to introduce to the composition of explosives do not damage the explosive and are themselves undamaged after an explosion and have no adverse environmental effects.

“These are tiny grains of aluminum alloy, comprised of rare-earth elements,” informs Project Manager and Head of Laboratory Yuri Krasevich. “There are very few such elements in nature and they are dispersed throughout the Earth’s Crust. Therefore, in whatever quantities they may sensibly be found in special, pre-set combinations, they are not met in either natural or manmade objects. However it will be possible to find them at the site of an explosion; at least if they had been initially introduced to the composition of the explosive.”

Naturally, it is not so simple to identify such “fingerprints” as it is to read information from a barcode in a supermarket. Here the task in fact involves a highly complex chemical analysis of microscopic samples, to discover how many rare-earth elements there are in the sample, what exactly they are and in what combination. And yet the researchers have coped with this most difficult of tasks.

For the analytical method the project authors proposed the use of laser-emission analysis of the element composition, using equipment developed by NPO Typhoon. The scientists also developed the necessary methodology and highly complex software for statistical analysis.

The first tests have already been conducted. Using a special bench in an explosion chamber the properties of an “encoded” explosive were studied and the scientists are confident that it explodes “as it should” – no worse than the explosive in its initial state. The same can be said for the “fingerprints” it leaves, which enable identification to the same level of reliability as a product that is identified by its barcode.

Olga Myznikova | alfa
Further information:
http://www.istc.ru

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>