Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Barcode for explosives

04.03.2005


Experts encounter a serious problem when studying the crime scene after an explosion. They can establish to a high degree of probability the type and power of the device used by terrorists and with what explosive substance it was filled with. However, they are usually unable to answer the most important question as to where and when the explosive itself was made: TNT is still TNT, regardless of the where and when it was produced.



Specialists from the Semenov Institute of Chemical Physics and their colleagues from several defense enterprises have developed special encoding additives. If these additives are introduced to the composition of the explosive, the site of the explosion will leave a kind of fingerprint, with which the explosive could be identified and the path of its legal movements could be traced; this would give the investigation into an incident of this kind a thread to uncover the supply channels of the terrorists. This most important work was fulfilled by the researchers in the framework of ISTC Project # 1292.

It is very difficult to make such encoding additives specifically for explosives; the requirements are too strict. On one hand they have to be completely harmless to the product (the explosive) and to the environment in their own right. On the other hand the explosion must not damage the encoding additive. And of course they all have to be individual, to ensure the reliability of the identification process. No dirt or impurities should be able to hinder the recognition of markers or to confuse them.


However, these complications proved no problem to the scientists from the Institute of Chemical Physics. The encoding additives they have proposed to introduce to the composition of explosives do not damage the explosive and are themselves undamaged after an explosion and have no adverse environmental effects.

“These are tiny grains of aluminum alloy, comprised of rare-earth elements,” informs Project Manager and Head of Laboratory Yuri Krasevich. “There are very few such elements in nature and they are dispersed throughout the Earth’s Crust. Therefore, in whatever quantities they may sensibly be found in special, pre-set combinations, they are not met in either natural or manmade objects. However it will be possible to find them at the site of an explosion; at least if they had been initially introduced to the composition of the explosive.”

Naturally, it is not so simple to identify such “fingerprints” as it is to read information from a barcode in a supermarket. Here the task in fact involves a highly complex chemical analysis of microscopic samples, to discover how many rare-earth elements there are in the sample, what exactly they are and in what combination. And yet the researchers have coped with this most difficult of tasks.

For the analytical method the project authors proposed the use of laser-emission analysis of the element composition, using equipment developed by NPO Typhoon. The scientists also developed the necessary methodology and highly complex software for statistical analysis.

The first tests have already been conducted. Using a special bench in an explosion chamber the properties of an “encoded” explosive were studied and the scientists are confident that it explodes “as it should” – no worse than the explosive in its initial state. The same can be said for the “fingerprints” it leaves, which enable identification to the same level of reliability as a product that is identified by its barcode.

Olga Myznikova | alfa
Further information:
http://www.istc.ru

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>