Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As robots learn to imitate

22.12.2004


Can robots learn to communicate by studying and imitating humans’ gestures? That’s what MIRROR’s researchers aimed to find out by studying how infants and monkeys learn complex acts such as grasping and transferring it to robots.



“Our main motivation for the project was to advance the understanding of how humans recognise and imitate gestures,” says Professor Giulio Sandini, coordinator of the three-year IST-funded project, MIRROR. “We did that by building an artificial system that can learn to communicate by means of body gestures.”

Researchers began by designing and conducting behavioural experiments with infants of different ages and with monkeys within the framework of the so-called ‘mirror neurons’. These neurons, first discovered in the brains of monkeys, have the unique property of being activated not only when monkeys or human infants perform specific grasping actions, but also when they see the same grasping action performed by someone else – for example, the mirror image of his or her own body. Mirror neurons behave as a motor resonant system activated both during goal-directed actions and the observation of similar actions performed by others.


During the first year of the project, researchers worked at improving humanoid robotic platforms and conducted experiments using a ‘cyber glove’. This set-up allowed researchers to collect visual and motor data that was used in investigating the relationship between vision and action in the recognition of hand gestures.

The second year’s experiments with monkeys and infants investigated how visual and motor information can be used to learn to discriminate grasping actions. They then used that information to show how, by detecting visual clues to the function of an object, a robot can mimic simple object-directed actions.

In the final year they concentrated on integrating the developed work into a humanoid robot, which consisted of a binocular head, an arm, and a multi-fingered hand. Although the integration is not fully complete, they believe they have uncovered many elements of a biologically-compatible architecture that can be replicated in robots.

”We now have better knowledge of how and when the ability to grasp objects appropriately appears in human babies,” says Professor Sandini. “From the robotics point of view, we demonstrated that it is easier to interpret actions performed by others if the system has built a representation of the action during learning. Learning precedes understanding. We implemented a complex behaviour on our robot based on this representation.”

Although the project is finished, all the members of the consortium now participate in a follow-up FP6 IST project called RobotCub that has, among other aspects, the scientific goal of continuing the MIRROR’s project work. RobotCub focuses on building a humanoid platform and studying the development of manipulation skills.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>