Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

As robots learn to imitate

22.12.2004


Can robots learn to communicate by studying and imitating humans’ gestures? That’s what MIRROR’s researchers aimed to find out by studying how infants and monkeys learn complex acts such as grasping and transferring it to robots.



“Our main motivation for the project was to advance the understanding of how humans recognise and imitate gestures,” says Professor Giulio Sandini, coordinator of the three-year IST-funded project, MIRROR. “We did that by building an artificial system that can learn to communicate by means of body gestures.”

Researchers began by designing and conducting behavioural experiments with infants of different ages and with monkeys within the framework of the so-called ‘mirror neurons’. These neurons, first discovered in the brains of monkeys, have the unique property of being activated not only when monkeys or human infants perform specific grasping actions, but also when they see the same grasping action performed by someone else – for example, the mirror image of his or her own body. Mirror neurons behave as a motor resonant system activated both during goal-directed actions and the observation of similar actions performed by others.


During the first year of the project, researchers worked at improving humanoid robotic platforms and conducted experiments using a ‘cyber glove’. This set-up allowed researchers to collect visual and motor data that was used in investigating the relationship between vision and action in the recognition of hand gestures.

The second year’s experiments with monkeys and infants investigated how visual and motor information can be used to learn to discriminate grasping actions. They then used that information to show how, by detecting visual clues to the function of an object, a robot can mimic simple object-directed actions.

In the final year they concentrated on integrating the developed work into a humanoid robot, which consisted of a binocular head, an arm, and a multi-fingered hand. Although the integration is not fully complete, they believe they have uncovered many elements of a biologically-compatible architecture that can be replicated in robots.

”We now have better knowledge of how and when the ability to grasp objects appropriately appears in human babies,” says Professor Sandini. “From the robotics point of view, we demonstrated that it is easier to interpret actions performed by others if the system has built a representation of the action during learning. Learning precedes understanding. We implemented a complex behaviour on our robot based on this representation.”

Although the project is finished, all the members of the consortium now participate in a follow-up FP6 IST project called RobotCub that has, among other aspects, the scientific goal of continuing the MIRROR’s project work. RobotCub focuses on building a humanoid platform and studying the development of manipulation skills.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>