Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists develop wireless system to monitor volcanoes

23.09.2004


Seismologists, Ecuadorian officials, area residents could benefit from improved data



A rumbling South American volcano has gone wireless: Computer scientists at Harvard University have teamed up with seismologists at the University of New Hampshire and University of North Carolina to fit an Ecuadorian peak with a wireless array to monitor volcanic activity. The sensors should help researchers, officials, and local residents understand and plan for eruptions of Tungarahua, one of Ecuador’s most active volcanoes in recent years.

The researchers installed the wireless network on Tungarahua and captured 54 hours of data during a recent trip to the 5,016-meter mountain. The wireless system could eventually replace the wired sensors now used on Tungarahua and many other volcanoes. "Systems used to monitor volcanic activity rapidly capture huge amounts of data," says Matthew D. Welsh, assistant professor of computer science in the Division of Engineering and Applied Sciences at Harvard. "The wired systems now used to monitor Tungarahua and other volcanoes are expensive, quickly exhaust batteries, and force people to trek up the slopes of a volcano every few days to retrieve the data that has accumulated."


Welsh and his colleagues fitted Tungarahua with a network of five tiny, low-power wireless sensor nodes equipped with a special microphone to monitor infrasonic (low-frequency acoustic) signals emitted during eruptions. Each runs on two AA batteries, is sealed in a waterproof container the size of a soap dish, and transmits data automatically to an observation post more than 5 miles away down the mountain.

Often rumbling and spewing ash and hot gas numerous times each day, Tungarahua ranks among Ecuador’s most threatening volcanoes. In 1999 the entire town of Banos, in Tungarahua’s shadow, was evacuated for several months after observations led scientists and government officials to believe, incorrectly, that a major eruption was imminent.

Wireless sensor networks represent a new kind of computing platform. They consist of small, low-power, wireless devices merging sensors with a small amount of computing power and storage. Sensor networks have been explored for applications such as habitat monitoring, medical care, and seismic analysis of structures; this effort is believed to be the first such application of wireless sensor networks to volcanic monitoring.

"This is a proof-of-concept that wired systems for monitoring volcanic activity can be replaced with wireless arrays," Welsh says. "Specifically, our work indicates that wireless systems can be used to follow long-term trends in volcanic activity that are of great interest to researchers. This long-term observation entails copious amounts of data that is difficult to obtain with wired monitoring systems. Seismologists are very excited about the possibilities here."

Seismologists and volcanologists use both seismic and infrasonic signals to monitor volcanic activity. Seismometers provide information on seismic waves propagating through the earth, but are poorly suited to discriminating eruptions from other activity such as earthquakes or mining operations. Infrasound waves, with a wavelength of less than 20 hertz, are characteristic of explosions and provide additional information not available with seismic monitoring.

Welsh and his colleagues now plan to develop a wireless seismometer to augment their infrasound array. The researchers also intend to deploy a larger network of some 20 nodes on Tungarahua, and may place wireless sensor networks on several other active volcanoes.

Welsh’s colleagues on this project are Geoff Werner-Allen at Harvard, Jeff Johnson at the University of New Hampshire, Mario Ruiz at the University of North Carolina and the Instituto Geofísico of the Escuela Politecnica Nacional in Ecuador, and Jonathan Lees at the University of North Carolina.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>