Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer scientists develop wireless system to monitor volcanoes

23.09.2004


Seismologists, Ecuadorian officials, area residents could benefit from improved data



A rumbling South American volcano has gone wireless: Computer scientists at Harvard University have teamed up with seismologists at the University of New Hampshire and University of North Carolina to fit an Ecuadorian peak with a wireless array to monitor volcanic activity. The sensors should help researchers, officials, and local residents understand and plan for eruptions of Tungarahua, one of Ecuador’s most active volcanoes in recent years.

The researchers installed the wireless network on Tungarahua and captured 54 hours of data during a recent trip to the 5,016-meter mountain. The wireless system could eventually replace the wired sensors now used on Tungarahua and many other volcanoes. "Systems used to monitor volcanic activity rapidly capture huge amounts of data," says Matthew D. Welsh, assistant professor of computer science in the Division of Engineering and Applied Sciences at Harvard. "The wired systems now used to monitor Tungarahua and other volcanoes are expensive, quickly exhaust batteries, and force people to trek up the slopes of a volcano every few days to retrieve the data that has accumulated."


Welsh and his colleagues fitted Tungarahua with a network of five tiny, low-power wireless sensor nodes equipped with a special microphone to monitor infrasonic (low-frequency acoustic) signals emitted during eruptions. Each runs on two AA batteries, is sealed in a waterproof container the size of a soap dish, and transmits data automatically to an observation post more than 5 miles away down the mountain.

Often rumbling and spewing ash and hot gas numerous times each day, Tungarahua ranks among Ecuador’s most threatening volcanoes. In 1999 the entire town of Banos, in Tungarahua’s shadow, was evacuated for several months after observations led scientists and government officials to believe, incorrectly, that a major eruption was imminent.

Wireless sensor networks represent a new kind of computing platform. They consist of small, low-power, wireless devices merging sensors with a small amount of computing power and storage. Sensor networks have been explored for applications such as habitat monitoring, medical care, and seismic analysis of structures; this effort is believed to be the first such application of wireless sensor networks to volcanic monitoring.

"This is a proof-of-concept that wired systems for monitoring volcanic activity can be replaced with wireless arrays," Welsh says. "Specifically, our work indicates that wireless systems can be used to follow long-term trends in volcanic activity that are of great interest to researchers. This long-term observation entails copious amounts of data that is difficult to obtain with wired monitoring systems. Seismologists are very excited about the possibilities here."

Seismologists and volcanologists use both seismic and infrasonic signals to monitor volcanic activity. Seismometers provide information on seismic waves propagating through the earth, but are poorly suited to discriminating eruptions from other activity such as earthquakes or mining operations. Infrasound waves, with a wavelength of less than 20 hertz, are characteristic of explosions and provide additional information not available with seismic monitoring.

Welsh and his colleagues now plan to develop a wireless seismometer to augment their infrasound array. The researchers also intend to deploy a larger network of some 20 nodes on Tungarahua, and may place wireless sensor networks on several other active volcanoes.

Welsh’s colleagues on this project are Geoff Werner-Allen at Harvard, Jeff Johnson at the University of New Hampshire, Mario Ruiz at the University of North Carolina and the Instituto Geofísico of the Escuela Politecnica Nacional in Ecuador, and Jonathan Lees at the University of North Carolina.

Steve Bradt | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>