Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Predicting the movements of a mobile phone

22.09.2004


Predicting the movements of mobile cell phone communications systems, thus providing a guarantee of the quality of service (QoS) and offering locating services, as well as recognising imperfect texts on a dictionary basis, are two of the applications demonstrated by José Javier Astrain Escola, engineer in the Public University of Navarre. The tool that makes this task possible is one that employs fuzzy state automatas with empty chain transitions.



At the beginning of the study, this engineer found that there was very little literature on the subject: “As regards the theory fuzzy state automatas with empty chain transitions, there was no work in the literature. Regarding the classification of chains, they were presented as the most common techniques, as probabilistic types although in this PhD, we have shown that fuzzy techniques enable improved final recognition rates than these”.

It is in the mobile cellular communications systems that, “currently great efforts are being made to provide locating mechanisms, quality of service and recognition of the mobility of users with latest–generation systems such as UMTS”.


Thus, José Javier Astrain’s PhD puts forward “a tool that enables the measurement of the similarity between chains, working with imperfect chains of symbols. In this way, we have presented a fuzzy automata which gives rise to various families of values as a function of the parameters employed by said autómata.”

This new automata works with fuzzy state sets and fuzzy symbols chains. The automata was validated “by means of a series of experiments that enabled us to compare the results obtained with other techniques proposed in the literature”.

In this context, the most relevant contribution of the work is “the capacity to work with errors of edition and the handling by the automata of imperfect decisions inherited from the previous stages of classification”.

On terminating the investigation, José Javier Astrain underlined the improvements achieved, “the deformed fuzzy state automata achieving recognition rates of 99% when the observed texts show error rates of 80%”.

Improving service quality

Once the capacity of the fuzzy automatas and deformed fuzzy are shown to tackle the problems of the imperfect recognition of symbols, “we proposed taking on board an industrial problem of great current interest, the application of techniques developed for the management of quality of service in mobile communications systems”.

As regards QoS management in mobile cell phone communications systems, “we offer a model of mobility based on chains of symbols with three different types of coding. The chains of symbols which represent the displacement of the mobile terminal throughout its movements are obtained by the mobile by the triangulation of adjacent base stations. These chains are compared by the fuzzy automata of the terminal with those of a dictionary that represent the most frequent routes within the cell in which the terminal is found. On determining the route followed, this makes it possible for the terminal to initiate the reserve of resources in the target cell with sufficient advance warning thanks to the prediction of location calculated by the automata”.

Thus, “a tool is proposed that enables the satisfactory resolution of these needs at a low computational cost, an interchange of messages between base stations and terminals and that can integrate itself into new designs of these types of networks”.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>