Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Predicting the movements of a mobile phone


Predicting the movements of mobile cell phone communications systems, thus providing a guarantee of the quality of service (QoS) and offering locating services, as well as recognising imperfect texts on a dictionary basis, are two of the applications demonstrated by José Javier Astrain Escola, engineer in the Public University of Navarre. The tool that makes this task possible is one that employs fuzzy state automatas with empty chain transitions.

At the beginning of the study, this engineer found that there was very little literature on the subject: “As regards the theory fuzzy state automatas with empty chain transitions, there was no work in the literature. Regarding the classification of chains, they were presented as the most common techniques, as probabilistic types although in this PhD, we have shown that fuzzy techniques enable improved final recognition rates than these”.

It is in the mobile cellular communications systems that, “currently great efforts are being made to provide locating mechanisms, quality of service and recognition of the mobility of users with latest–generation systems such as UMTS”.

Thus, José Javier Astrain’s PhD puts forward “a tool that enables the measurement of the similarity between chains, working with imperfect chains of symbols. In this way, we have presented a fuzzy automata which gives rise to various families of values as a function of the parameters employed by said autómata.”

This new automata works with fuzzy state sets and fuzzy symbols chains. The automata was validated “by means of a series of experiments that enabled us to compare the results obtained with other techniques proposed in the literature”.

In this context, the most relevant contribution of the work is “the capacity to work with errors of edition and the handling by the automata of imperfect decisions inherited from the previous stages of classification”.

On terminating the investigation, José Javier Astrain underlined the improvements achieved, “the deformed fuzzy state automata achieving recognition rates of 99% when the observed texts show error rates of 80%”.

Improving service quality

Once the capacity of the fuzzy automatas and deformed fuzzy are shown to tackle the problems of the imperfect recognition of symbols, “we proposed taking on board an industrial problem of great current interest, the application of techniques developed for the management of quality of service in mobile communications systems”.

As regards QoS management in mobile cell phone communications systems, “we offer a model of mobility based on chains of symbols with three different types of coding. The chains of symbols which represent the displacement of the mobile terminal throughout its movements are obtained by the mobile by the triangulation of adjacent base stations. These chains are compared by the fuzzy automata of the terminal with those of a dictionary that represent the most frequent routes within the cell in which the terminal is found. On determining the route followed, this makes it possible for the terminal to initiate the reserve of resources in the target cell with sufficient advance warning thanks to the prediction of location calculated by the automata”.

Thus, “a tool is proposed that enables the satisfactory resolution of these needs at a low computational cost, an interchange of messages between base stations and terminals and that can integrate itself into new designs of these types of networks”.

Garazi Andonegi | alfa
Further information:

More articles from Information Technology:

nachricht New 3-D wiring technique brings scalable quantum computers closer to reality
19.10.2016 | University of Waterloo

nachricht Quantum computers: 10-fold boost in stability achieved
18.10.2016 | University of New South Wales

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>