Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sandia supercomputer to be world’s fastest, yet smaller and less expensive than any competitor

28.07.2004


Red Storm to be assembled in New Mexico

Red Storm will be faster, yet smaller and less expensive, than previous supercomputers, say researchers at the National Nuclear Security Administration’s Sandia National Laboratories, where the machine will be assembled.
The first quarter of the $90 million, 41.5 teraflops (trillion operations/second) machine should be installed at Sandia by the end of September and fully up and running by January, says Bill Camp (Sandia’s Director of Computation, Computers, Information and Mathematics), who heads the effort to design and assemble the innovative machine.


Performance testing will begin in early 2005. By the end of 2005, the machine should be capable of 100 teraflops, after each single-processor chip is replaced with a new chip that contains two independent processors, each running 25 percent faster than the original chip.

Japan’s Earth Simulator, currently the world’s fastest supercomputer, has a peak eight megawatts of power compared to Red Storm’s projected two megawatts and takes up approximately three times the space.

Red Storm, an air-cooled supercomputer, is being developed by Sandia and Cray Inc. using mostly off-the-shelf parts.

Design innovations permit the machine, from concept to assembly, to be completed with unusual rapidity. While manufacturers typically require four to seven years from concept to first product on a new supercomputer, Cray says Red Storm will begin testing at Sandia less than 30 months after conceptual work began.

The main purpose of the machine is work for the U.S. nuclear stockpile: designing new components; virtually testing components under hostile, abnormal, and normal conditions; and helping in weapons engineering and weapons physics. The machine is expected to run ten times as fast as Sandia’s ASCI Red computer system on Sandia’s important application codes. (ASCI Red held first place on the top-500 list of the world’s supercomputers for three-and-one-half consecutive years.)

But the machine, because of its uniquely inexpensive design, may become the center of Cray’s future supercomputer line, says Camp. "From Cray’s point of view, the approach we’re pioneering here is so powerful they may want their next supercomputers to follow suit."

The machine has unique characteristics: it is scalable from a single cabinet (96 processors) to approximately 300 cabinets (30,000 processors). In addition, the system was designed with a unique capability to monitor and manage itself. Much of the cost incurred for the machine is non-recurring engineering design costs.

"We couldn’t afford a ’Rolls Royce’ -- an entirely custom-designed machine," says Camp. "The way Red Storm is designed, we don’t have to shut down to replace a part. We work around failed components until we decide to fix them -- all without shutting down."

Cray was chosen because the company was "forward-looking, flexible, willing to work with us to design a new architecture, and had the lowest cost proposal."

The machine itself -- a few facts

The machine has 96 processors in each computer cabinet, with four processors to a board. Each processor can have up to eight gigabytes of memory sitting next to it. Four Cray SeaStars -- powerful networking chips -- sit on a daughter board atop each processor board. All SeaStars talk to each other "like a Rubik cube with lots of squares on each face," says Camp. "Cray SeaStars are about a factor of five faster than any current competing capability."

Messages encoded in MPI (the Message Passage Interface standard) move from processor to processor at a sustained speed of 4.5 gigabytes per second bidirectionally. The amount of time to get the first information bit from one processor to another is less than 5 microseconds across the system. The machine is arranged in four rows of cabinets. There are a total of 11,648 Opteron processors and a similar number of SeaStars.

The SeaStar chip includes an 800 MHz DDR Hypertransport interface to its Opteron processor, a PowerPC core for handling message-passing chores, and a seven-port router (six external ports). SeaStars are linked together to make up the system’s 3-D (X-Y-Z axis) mesh interconnect.

IBM is fabricating the SeaStar chips using 0.13-micron CMOS technology.

Visualization will occur inside the computer itself -- a capability unique to Red Storm among supercomputers.

Neal Singer | EurekAlert!
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

NASA examines Peru's deadly rainfall

24.03.2017 | Earth Sciences

What does congenital Zika syndrome look like?

24.03.2017 | Health and Medicine

Steep rise of the Bernese Alps

24.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>