Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Quantum computers are a quantum leap closer, say Purdue physicists

30.04.2004


A new breed of faster, more powerful computers based on quantum mechanics may be a step closer to reality, report scientists from Purdue and Duke universities.


As part of an effort to make superpowerful quantum computers, Purdue University researchers have created "quantum dots" in a semiconducting material known as gallium arsenide. The quantum dots (the two small circular areas shown adjacent to one other in the center of the image) are puddles of about 40-60 electrons. Together the dots can form part of transistors in which the electrons’ spin, a quantum mechanical property, could be harnessed to make logic gates for next-generation computer chips. Each dot measures only about 180 nanometers (billionths of a meter) in diameter — about 5,000 of them could stretch across the width of a grain of sand. (Illustration by Albert Chang, Duke University Department of Physics)



By linking a pair of tiny "puddles" of a few dozen electrons sandwiched inside a semiconductor, researchers have enabled these two so-called "quantum dots" to become parts of a transistor – the vital switching component in computer chips. Future computers that use quantum dots to store and process digital information might outperform conventional computer circuits because of both the new transistors’ smaller size and their potential to solve problems that would take centuries on today’s machines.

"This is a very promising candidate for quantum computation," said Albert M. Chang, who is an adjunct professor of physics in Purdue’s School of Science. "We believe this research will allow large numbers of quantum-dot switches to work together as a group, which will be necessary if they are ever to function as a computer’s brain, or memory.


"For the market, quantum computers mean better encryption methods and heightened data security. For science, our research may help address the longstanding mystery of the relationship between the classical physics of the world we see every day, and the peculiar world of quantum physics that governs the tiny particles inside atoms."

The research will appear in the current (April 30) issue of Physical Review Letters. The lead author is Jeng-Chung Chen, who received his doctorate at Purdue and is now at the University of Tokyo. Co-authors are Chang, who in 2003 relocated from Purdue to Duke University, where he is a professor of physics, and Michael. R. Melloch, a professor in Purdue’s School of Electrical and Computer Engineering.

As computer circuits grow ever smaller, manufacturers draw nearer to the time when their chips’ tiny on-off switches – representing the 1’s and 0’s of binary information, or bits – can be made comparable in size to a single molecule. At smaller scales, the laws of classical physics will no longer apply to the switches, but will be replaced by the laws of the subatomic world. These laws, described by quantum physics, can appear strange to the uninitiated.

"An electron, for example, can behave like a particle or a wave at times, and it has the odd ability to seemingly be in two different states at once," Chang said. "Physicists need a different set of words and concepts to describe the behavior of objects that can do such counterintuitive things. One concept we use is the ’spin’ of an electron, which we loosely imagine as being similar to the way the Earth spins each day on its axis. But it also describes a sort of ordering electrons must obey in one another’s presence: When two electrons occupy the same space, they must pair with opposite spins, one electron with ’up’ spin, the other ’down.’"

Spin is one property that physicists seek to harness for memory storage. After collecting 40 to 60 paired electrons in a puddle within a semiconductor wafer of gallium arsenide and aluminum gallium arsenide, the team then added a single additional unpaired electron to the puddle. This extra electron imparted a net spin of up or down to the entire puddle, which they call a quantum dot. The team also built a second quantum dot nearby with the same net spin.

"When isolated from one another, the two net spins would not seek to pair with each other," Chang said. "But we have a special method of ’tuning’ the two-dot system so that, despite the similar spins, the two unpaired electrons became ’entangled’ – they begin to interact with one another."

The team used eight tiny converging wires, or "gates," to deposit the electrons in the dots one by one and then electronically fine-tune the dots’ properties so they would become entangled. With these gates, the team was able to slowly tune the interacting dots so they are able to exist in a mixed, down-up and up-down configuration simultaneously. In each dot, an up or down configuration would represent a 1 or 0 in a quantum bit, or "qubit," for possible use in memory chips.

"Entanglement is a key property that would help give a quantum computer its power," Chang said. "Because each system exists in this mixed, down-up configuration, it may allow us to create switches that are both on and off at the same time. That’s something current computer switches can’t do."

Large groups of qubits could be used to solve problems that have myriad potential solutions that must be winnowed down quickly, such as factoring the very large numbers used in data encryption.

"A desktop computer performs single operations one after another in series," Chang said. "It’s fast, but if you could do all those operations together, in parallel rather than in series, it can be exponentially faster. In the encryption world, solving some problems could take centuries with a conventional computer."

But for a quantum computer, whose bits can be in two quantum states at once – both on and off at the same time – many solutions could, in theory, be explored simultaneously, allowing for a solution in hours rather than lifetimes.

"These computers would have massive parallelism built right in, allowing for the solution of many tough problems," Chang said. "But for us physicists, the possibilities of quantum computers extend beyond any single application. There also exists the potential to explore why there seem to be two kinds of reality in the universe – one of which, in everyday language, is said to stop when you cross the border ’into the interior of the atom.’"

Because a quantum computer would require all its qubits to behave according to quantum rules, its processor could itself serve as a laboratory for exploring the quantum world.

"Such a computer would have to exhibit ’quantum coherence,’ meaning its innards would be a large-scale system with quantum properties rather than classical ones," Chang said. "When quantum systems interact with the classical world, they tend to lose their coherence and decay into classical behavior, but the quantum-dot system we have built exhibits naturally long-lasting coherence. As an entire large-scale system that can behave like a wave or a particle, it may provide windows into the nature of the universe we cannot otherwise easily explore."

The system would not have to be large; each dot has a width of only about 200 nanometers, or billionths of a meter. About 5,000 of them placed end to end would stretch across the diameter of a grain of sand. But Chang said that his group’s system had another, greater advantage even than its minuscule size.

"Qubits have been created before using other methods," he said. "But ours have a potential advantage. It seems possible to scale them up into large systems that can work together because we can control their behavior more effectively. Many systems are limited to a handful of qubits at most, far too few to be useful in real-world computers."

For now, though, the team’s qubit works too slowly to be used as the basis of a marketable device. Chang said the team would next concentrate on improving the speed at which they can manipulate the spin of the electrons.

"Essentially, what we’ve done is just a physics experiment, no more," he said. "In the future, we’ll need to manipulate the spin at very fast rates. But for the moment, we have, for the first time, demonstrated the entanglement of two quantum dots and shown that we can control its properties with great precision. It offers hope that we can reach that future within a decade or so."

This research was funded in part by the National Science Foundation.

Writer: Chad Boutin, (765) 494-2081, cboutin@purdue.edu
Source: Albert M. Chang, (919) 660-2596, yingshe@phy.duke.edu
Purdue News Service: (765) 494-2096; purduenews@purdue.edu

Chad Boutin | Purdue News
Further information:
http://news.uns.purdue.edu/UNS/html4ever/2004/040429.Chang.parallel.html

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>