Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


World’s biggest ‘virtual supercomputer’ given the go-ahead


The Particle Physics and Astronomy Research Council has today announced GBP 16 million to create a massive computing Grid, equivalent to the world’s second largest supercomputer after Japan’s Earth Simulator computer. This Grid, known as GridPP2 will eventually form part of a larger European Grid, to be used to process the data deluge from CERN, the European Particle Physics Laboratory, when its new facility, the Large Hadron Collider (LHC), comes online in 2007.

GridPP is a collaboration of UK Particle Physicists and Computer Scientists working together to create a Grid for particle physics, enabling them to process the vast volumes of data generated in experiments. The LHC, a particle accelerator which will probe the nature of matter, is expected to generate data at a rate equivalent to 20 million CDs a year.

Professor Ian Halliday, Chief Executive of PPARC, said “GridPP2 will place UK particle physicists in a prime position to exploit physics from the Large Hadron Collider.”

"The GridPP2 Grid will address the future computing requirements of all the UK Particle Physics Experiments and should provide efficient sharing of resources between Particle Physics and other disciplines at the institutes." added Steve Lloyd, GridPP Collaboration Board Chair.

Grid computing shares the resources of connected computers, much as the World Wide Web (also created at CERN) enables the sharing of information between computers. By connecting large numbers of computers together, particle physicists are able to run simulations and analysis in a fraction of the time it would take to run on a single machine. Such work can also be done on supercomputers, but as these are custom built they are expensive and in high demand. The benefit of Grid computing is that it is constructed from cheap units and can be expanded or reduced to fit the users’ needs.

Dr Neil Geddes, PPARC’s Director of E-Science said “Today’s money will be used to create a grid equivalent to 20,000 1GHz personal computers. This is the largest in the world to be funded so far.” For the past year, GridPP have been running a prototype grid or ‘testbed’ across ten UK sites. From this they have developed the middleware needed for a larger Grid.

"GridPP2 will test new Grid computing technologies on a scale that we could have barely considered two years ago." said Tony Doyle, the GridPP Project Leader “The Grid deployed in phase 1 taught us about the importance of a series of testbeds where the software is incrementally integrated and tested within an annual deployment lifecycle. Running a stable large-scale grid service will be a major challenge and for this reason a key component of GridPP2 will be the establishment a core production team at the heart of deployment."

Middleware is the programming that allows the software (the programmes the scientists are using) to take advantage of the hardware (the computing resources they need to access). Middleware tackles issues such as security (e.g. allowing outside users access to a site’s computers) and ‘brokering’ (breaking data up into packages to be sent around the country or even world for rapid processing).

GridPP’s testbed was incorporated into the LHC Computing Grid in September 2003, which was the first time a production grid was deployed world-wide. GridPP is also working with projects such as the EU-funded Enabling Grids for E-Science in Europe (EGEE) which will integrate current national, regional and thematic Grid efforts to create a seamless European Grid infrastructure for the support of the European Research Area.

The experience gained in the GridPP project forms the basis of the much wider deployment of scientific computing grids which we are seeing across UK Universities through the UK’s e-Science programme. Industry has also been quick to appreciate the benefits of these technologies.

Julia Maddock | PPARC
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>