Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s biggest ‘virtual supercomputer’ given the go-ahead

16.12.2003


The Particle Physics and Astronomy Research Council has today announced GBP 16 million to create a massive computing Grid, equivalent to the world’s second largest supercomputer after Japan’s Earth Simulator computer. This Grid, known as GridPP2 will eventually form part of a larger European Grid, to be used to process the data deluge from CERN, the European Particle Physics Laboratory, when its new facility, the Large Hadron Collider (LHC), comes online in 2007.



GridPP is a collaboration of UK Particle Physicists and Computer Scientists working together to create a Grid for particle physics, enabling them to process the vast volumes of data generated in experiments. The LHC, a particle accelerator which will probe the nature of matter, is expected to generate data at a rate equivalent to 20 million CDs a year.

Professor Ian Halliday, Chief Executive of PPARC, said “GridPP2 will place UK particle physicists in a prime position to exploit physics from the Large Hadron Collider.”


"The GridPP2 Grid will address the future computing requirements of all the UK Particle Physics Experiments and should provide efficient sharing of resources between Particle Physics and other disciplines at the institutes." added Steve Lloyd, GridPP Collaboration Board Chair.

Grid computing shares the resources of connected computers, much as the World Wide Web (also created at CERN) enables the sharing of information between computers. By connecting large numbers of computers together, particle physicists are able to run simulations and analysis in a fraction of the time it would take to run on a single machine. Such work can also be done on supercomputers, but as these are custom built they are expensive and in high demand. The benefit of Grid computing is that it is constructed from cheap units and can be expanded or reduced to fit the users’ needs.

Dr Neil Geddes, PPARC’s Director of E-Science said “Today’s money will be used to create a grid equivalent to 20,000 1GHz personal computers. This is the largest in the world to be funded so far.” For the past year, GridPP have been running a prototype grid or ‘testbed’ across ten UK sites. From this they have developed the middleware needed for a larger Grid.

"GridPP2 will test new Grid computing technologies on a scale that we could have barely considered two years ago." said Tony Doyle, the GridPP Project Leader “The Grid deployed in phase 1 taught us about the importance of a series of testbeds where the software is incrementally integrated and tested within an annual deployment lifecycle. Running a stable large-scale grid service will be a major challenge and for this reason a key component of GridPP2 will be the establishment a core production team at the heart of deployment."

Middleware is the programming that allows the software (the programmes the scientists are using) to take advantage of the hardware (the computing resources they need to access). Middleware tackles issues such as security (e.g. allowing outside users access to a site’s computers) and ‘brokering’ (breaking data up into packages to be sent around the country or even world for rapid processing).

GridPP’s testbed was incorporated into the LHC Computing Grid in September 2003, which was the first time a production grid was deployed world-wide. GridPP is also working with projects such as the EU-funded Enabling Grids for E-Science in Europe (EGEE) which will integrate current national, regional and thematic Grid efforts to create a seamless European Grid infrastructure for the support of the European Research Area.

The experience gained in the GridPP project forms the basis of the much wider deployment of scientific computing grids which we are seeing across UK Universities through the UK’s e-Science programme. Industry has also been quick to appreciate the benefits of these technologies.

Julia Maddock | PPARC
Further information:
http://www.pparc.ac.uk/Nw/GridPP2.asp

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>