Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World’s biggest ‘virtual supercomputer’ given the go-ahead

16.12.2003


The Particle Physics and Astronomy Research Council has today announced GBP 16 million to create a massive computing Grid, equivalent to the world’s second largest supercomputer after Japan’s Earth Simulator computer. This Grid, known as GridPP2 will eventually form part of a larger European Grid, to be used to process the data deluge from CERN, the European Particle Physics Laboratory, when its new facility, the Large Hadron Collider (LHC), comes online in 2007.



GridPP is a collaboration of UK Particle Physicists and Computer Scientists working together to create a Grid for particle physics, enabling them to process the vast volumes of data generated in experiments. The LHC, a particle accelerator which will probe the nature of matter, is expected to generate data at a rate equivalent to 20 million CDs a year.

Professor Ian Halliday, Chief Executive of PPARC, said “GridPP2 will place UK particle physicists in a prime position to exploit physics from the Large Hadron Collider.”


"The GridPP2 Grid will address the future computing requirements of all the UK Particle Physics Experiments and should provide efficient sharing of resources between Particle Physics and other disciplines at the institutes." added Steve Lloyd, GridPP Collaboration Board Chair.

Grid computing shares the resources of connected computers, much as the World Wide Web (also created at CERN) enables the sharing of information between computers. By connecting large numbers of computers together, particle physicists are able to run simulations and analysis in a fraction of the time it would take to run on a single machine. Such work can also be done on supercomputers, but as these are custom built they are expensive and in high demand. The benefit of Grid computing is that it is constructed from cheap units and can be expanded or reduced to fit the users’ needs.

Dr Neil Geddes, PPARC’s Director of E-Science said “Today’s money will be used to create a grid equivalent to 20,000 1GHz personal computers. This is the largest in the world to be funded so far.” For the past year, GridPP have been running a prototype grid or ‘testbed’ across ten UK sites. From this they have developed the middleware needed for a larger Grid.

"GridPP2 will test new Grid computing technologies on a scale that we could have barely considered two years ago." said Tony Doyle, the GridPP Project Leader “The Grid deployed in phase 1 taught us about the importance of a series of testbeds where the software is incrementally integrated and tested within an annual deployment lifecycle. Running a stable large-scale grid service will be a major challenge and for this reason a key component of GridPP2 will be the establishment a core production team at the heart of deployment."

Middleware is the programming that allows the software (the programmes the scientists are using) to take advantage of the hardware (the computing resources they need to access). Middleware tackles issues such as security (e.g. allowing outside users access to a site’s computers) and ‘brokering’ (breaking data up into packages to be sent around the country or even world for rapid processing).

GridPP’s testbed was incorporated into the LHC Computing Grid in September 2003, which was the first time a production grid was deployed world-wide. GridPP is also working with projects such as the EU-funded Enabling Grids for E-Science in Europe (EGEE) which will integrate current national, regional and thematic Grid efforts to create a seamless European Grid infrastructure for the support of the European Research Area.

The experience gained in the GridPP project forms the basis of the much wider deployment of scientific computing grids which we are seeing across UK Universities through the UK’s e-Science programme. Industry has also been quick to appreciate the benefits of these technologies.

Julia Maddock | PPARC
Further information:
http://www.pparc.ac.uk/Nw/GridPP2.asp

More articles from Information Technology:

nachricht Making Waves
29.06.2017 | Institute of Science and Technology Austria

nachricht Seeing the forest through the trees with a new LiDAR system
28.06.2017 | The Optical Society

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>